
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ggen20

International Journal of General Systems

ISSN: 0308-1079 (Print) 1563-5104 (Online) Journal homepage: http://www.tandfonline.com/loi/ggen20

Clonal sets of a binary relation

Lemnaouar Zedam, Raúl Pérez-Fernández, Hassane Bouremel & Bernard De
Baets

To cite this article: Lemnaouar Zedam, Raúl Pérez-Fernández, Hassane Bouremel & Bernard
De Baets (2018): Clonal sets of a binary relation, International Journal of General Systems, DOI:
10.1080/03081079.2018.1445738

To link to this article:  https://doi.org/10.1080/03081079.2018.1445738

Published online: 07 Mar 2018.

Submit your article to this journal 

Article views: 15

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=ggen20
http://www.tandfonline.com/loi/ggen20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03081079.2018.1445738
https://doi.org/10.1080/03081079.2018.1445738
http://www.tandfonline.com/action/authorSubmission?journalCode=ggen20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ggen20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/03081079.2018.1445738
http://www.tandfonline.com/doi/mlt/10.1080/03081079.2018.1445738
http://crossmark.crossref.org/dialog/?doi=10.1080/03081079.2018.1445738&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1080/03081079.2018.1445738&domain=pdf&date_stamp=2018-03-07


INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018
https://doi.org/10.1080/03081079.2018.1445738

Clonal sets of a binary relation

Lemnaouar Zedama , Raúl Pérez-Fernándezb , Hassane Bouremela,c and
Bernard De Baetsb

aLaboratory of Pure and Applied Mathematics, Department of Mathematics, Med Boudiaf University of Msila,
Msila, Algeria; bKERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent
University, Gent, Belgium; cDepartment of Mathematics, University Mohamed El Bachir El Ibrahimi,
El Anasser, Bordj Bou Arréridj, Algeria

ABSTRACT

In a recent paper, we have introduced the notion of clone relation
of a given binary relation. Intuitively, two elements are said to be
“clones” if they are related in the same way w.r.t. every other element.
In this paper,wegeneralize this notion frompairs of elements to sets of
elements of any cardinality, resulting in the introduction of clonal sets.
We investigate the most important properties of clonal sets, paying
particular attention to the introduction of the clonal closure operator,
to the analysis of the (lattice) structure of the set of clonal sets and
to a distance metric expressing how close two elements are to being
clones.
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1. Introduction

The study of binary relations probably is one of the oldest study subjects in modern
mathematics (Peirce 1880). Of particular interest are tolerance and equivalence relations,
which model whether two elements are “alike” or not. This premise of grouping together
elements that are “alike” represents the core of many scientific disciplines, such as cluster
analysis (Dave 1990; Everitt et al. 2011) and formal concept analysis (Ganter and Wille
1999; Bělohlávek and Vychodil 2012).

In this same direction, De Baets, Zedam, and Kheniche (2016) introduced the clone
relation of a given strict order relation for analysing whether two elements behave in
the same manner within the given strict order relation. Later on, Bouremel et al. (2017)
generalized the definition of clone relation to any type of binary relation by calling two
elements clones if they are related in the same way w.r.t. every other element. The resulting
relation turned out to be an interesting study subject that, despite what one could think
at first glance, does not need to be an equivalence relation in general for non-symmetric
relations. This clone relationhas proved tohave applications in the studyof compatibility of
binary fuzzy relations (Höhle and Blanchard 1985; Bělohlávek 2004; Kheniche, De Baets,
and Zedam 2015). More specifically, the clone relation has been used for studying the
compatibility of a crisp relation with a fuzzy equivalence relation (De Baets, Bouremel, and

CONTACT Raúl Pérez-Fernández raul.perezfernandez@ugent.be
© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/03081079.2018.1445738&domain=pdf
http://orcid.org/0000-0002-1420-9249
http://orcid.org/0000-0001-6966-1681
http://orcid.org/0000-0002-3876-620X


2 L. ZEDAM ET AL.

Zedam 2016) and for characterizing the fuzzy tolerance and fuzzy equivalence relations
that a strict order relation is compatible with (De Baets, Zedam, and Kheniche 2016).

Independently and just for the case of rankings (strict total order relations), the notion
of clones has been studied for decades in a totally different field1: social choice theory
(Tideman 1987; Zavist and Tideman 1989). In this context, two elements are said to be
clones if they are consecutive in the given ranking. Note that this definition coincides with
the definition by Bouremel et al. (2017) when restricted to rankings. Due to the key role
played by clones in social choice theory, where they can completely change the outcome
of an election procedure, a vast part of the literature in social choice theory has focused on
the search for methods that are independent of clones, with ranked pairs (Tideman 1987)
and the method of Schulze (2011) being two of the most prominent examples. However,
in this field, the notion of clones is not only restricted to pairs of elements, but is applied
to any possible set of cardinality greater than or equal to two. The considered rationale
is still the same though: a set of elements is said to be a set of clones if all elements in
the set are related in the same way w.r.t. every element not belonging to that set. In this
paper, we propose to follow this direction and introduce the notion of clonal set of a binary
relation. Many interesting results will follow. Here, we highlight the introduction of the
clonal closure operator, the complete lattice structure of the set of clonal sets, and a natural
distance metric measuring the clonal distance between two elements.

The remainder of the paper is structured as follows. In Section 2, we introduce the
notion of clonal set and discuss the most important properties. In Section 3, the clonal
closure operator is introduced and used to prove that the set of clonal sets is a complete
lattice. In Section 4, we introduce a distance metric that measures how close two elements
are to being clones. In Section 5, the particular cases in which the given relation is an
equivalence relation or a weak order relation are analysed. We end with some conclusions
in Section 6.

2. Clonal sets

2.1. The clone relation of a binary relation

A (binary) relation on a set X is a subset of X2, i.e. a set of couples (x, y) ∈ X2. For a
relation R onX, we often write xRy instead of (x, y) ∈ R. We denote by Rc the complement
of the relation R, i.e. for any x, y ∈ X, xRcy denotes the fact that (x, y) �∈ R. We denote
by Rt the transpose of the relation R, i.e. for any x, y ∈ X, xRty denotes the fact that yRx.
A relation R on a set X is said to be included in a relation S on the same set X, denoted
by R ⊆ S, if, for any x, y ∈ X, xRy implies that xSy. The union of two relations R and
S on a set X is the relation R ∪ S on X defined as R ∪ S = {(x, y) ∈ X2 | xRy ∨ xSy}.
Similarly, the intersection of two relations R and S on a set X is the relation R ∩ S on
X defined as R ∩ S = {(x, y) ∈ X2 | xRy ∧ xSy}. The set difference of two relations R
and S on a set X is the relation R\S on X defined as R\S = {(x, y) ∈ X2 | xRy ∧ xScy}.
The composition of two relations R and S on a set X is the relation R ◦ S on X defined as
R ◦ S = {(x, z) ∈ X2 | (∃y ∈ X)(xRy ∧ ySz)}.

We recall that common properties of a relation R on a set X are: reflexivity (xRx, for
any x ∈ X); irreflexivity (xRcx, for any x ∈ X); symmetry (xRy implies that yRx, for any
x, y ∈ X); antisymmetry ((xRy ∧ yRx) implies that x = y, for any x, y ∈ X); transitivity
((xRy ∧ yRz) implies that xRz, for any x, y, z ∈ X); and completeness (either xRy or yRx
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Figure 1. Natural interpretation of the clone relation based on the matrix representation of R.

holds, for any x, y ∈ X). A relation ≤ on a set X is called an order relation if it is reflexive,
antisymmetric and transitive. If an order relation is complete, then one talks about a total
order relation. A set X equipped with an order relation ≤ is called a partially ordered set
(poset, for short), denoted by (X,≤ ). For more details on (binary) relations, we refer to
Davey and Priestley (2002); Schröder (2002).

In the following, we recall the notion of clone relation of a (binary) relation introduced
by Bouremel et al. (2017), which generalizes the notion of clone relation of a strict order
relation introduced by De Baets, Zedam, and Kheniche (2016). Informally, two elements
are said to be clones (with respect to a given relation) if they are related in the same way
with any other element.

Definition 2.1 (Bouremel et al. 2017): Let R be a relation on a set X. The clone relation
≈R of R is the relation on X defined by

x ≈R y if

⎧⎨
⎩

(∀z ∈ X \ {x, y})(zRx ⇔ zRy)
and

(∀z ∈ X \ {x, y})(xRz ⇔ yRz) .

If x ≈R y, then we say that x and y are clones w.r.t. the relation R. We recall that the
clone relation ≈R of a relation R on X is a tolerance relation on X, i.e. a reflexive and
symmetric relation.

The matrix representation of a relation R can be used for illustrating the notion of clone
relation and for facilitating the identification of clones in the finite case. Let R be a relation
on a finite set X = {x1, x2, . . . , xn}. For any xi, xj ∈ X with 1 ≤ i, j ≤ n, it holds that2

Rij =
{
1, if xiRxj ,
0, if xiRcxj .

By definition, it holds that xi ≈R xj if and only if, for any k /∈ {i, j},Rik = Rjk andRki = Rkj.
This means that xi and xj are clones if and only if the row and column corresponding to
xi coincide with the row and column corresponding to xj, with the exception of the four
elements contained in the intersection of these two rows with these two columns. This is
illustrated in Figure 1.
Example 2.2: Consider the symmetric relations RD and RB associated with the diamond
graph and the butterfly graph represented in Figure 2.
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Figure 2. Diamond graph (left) and butterfly graph (right).

For instance, for RD we can see that a and c are related in the same way to b and d, thus,
a and c are clones. The clone relation of RD and the clone relation of RB are given by:

≈RD=

⎛
⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ , ≈RB=

⎛
⎜⎜⎜⎜⎝
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1

⎞
⎟⎟⎟⎟⎠ .

2.2. Clonal sets of a binary relation

The notion of clone relation can be naturally extended tomore than two elements, resulting
in the introduction of clonal sets. Informally, a clonal set is a set of which any two elements
are related in the same way with any other element not belonging to this set.
Definition 2.3: Let R be a relation on a set X. A subset A of X is called a clonal set of R if

(∀x, y ∈ A)(∀z ∈ X \ A)((zRx ⇔ zRy) ∧ (xRz ⇔ yRz)) .

We denote by CR the set of all clonal sets of a relation R. Obviously, if |X| ≤ 2, then it
holds that CR = P(X), where P(X) is the power set of X.

By definition, the fact that two elements of a subset are related (or not) has no impact
on this subset being a clonal set. In particular, the reflexivity of the given relation has no
impact on a subset being a clonal set.
Proposition 2.4: Let R1 and R2 be two relations on a set X and A be a subset of X. If
R1\A2 = R2\A2, then it holds that A ∈ CR1 if and only if A ∈ CR2 .

As before, the matrix representation of a relation can be used for illustrating the notion
of clonal set in the finite case. Let R be a relation on a finite set X = {x1, x2, . . . , xn}
and A be a subset of X. We denote by IA the set of indices corresponding to A, i.e.
IA = {i ∈ {1, 2, . . . , n} | xi ∈ A}. By definition, A is a clonal set of R if and only if, for any
i, j ∈ IA and any k �∈ IA, it holds that Rik = Rjk and Rki = Rkj. This means thatA is a clonal
set of R if and only if the row and column corresponding to any element xi ∈ A coincide
with the row and column corresponding to any other element xj ∈ A, with the exception
of the |A|2 elements contained in the intersection of these |A| rows with these |A| columns.
This is illustrated in Figure 3.
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Figure 3. Natural interpretation of the clonal set A = {xi , xj , x�} based on the matrix representation of R.

Example 2.5: Consider again the relations RD and RB given in Example 2.2. The set of
clonal sets of RD and the set of clonal sets of RB are given by:

CRD = {∅, {a}, {b}, {c}, {d}, {a, c}, {b, d}, {a, b, c, d}} ,
CRB = {∅, {e}, {f }, {g}, {h}, {i}, {e, f }, {h, i}, {e, f , h, i}, {e, f , g , h, i}} .

Note that some particular subsets can be easily identified as clonal sets.
Proposition 2.6: Let R be a relation on a set X and A be a subset of X.

(i) If A = ∅, then A ∈ CR. Therefore, ∅ is the smallest clonal set of R.
(ii) If A is a singleton, then A ∈ CR.
(iii) If A consists of two elements, say A = {x, y}, then A ∈ CR if and only if x ≈R y.
(iv) If A = X, then A ∈ CR. Therefore, X is the largest clonal set of R.
(v) For any element a ∈ X, it holds that the tolerance class [a]≈R = {b ∈ X | b ≈R a} is

a clonal set of R.

The set of clonal sets of a given relation always coincides with the set of clonal sets of its
complement and its transpose.
Proposition 2.7: Let R be a relation on a set X. Then it holds that CR = CRc = CRt .
Proof: First, we prove that CR = CRc . For any A ∈ CR, it holds that

A ∈ CR ⇔ (∀x, y ∈ A)(∀z ∈ X \ A)((zRx ⇔ zRy) ∧ (xRz ⇔ yRz))
⇔ (∀x, y ∈ A)(∀z ∈ X \ A)((zRcx ⇔ zRcy) ∧ (xRcz ⇔ yRcz))
⇔ A ∈ CRc .

Similarly, we prove that CR = CRt . For any A ∈ CR, it holds that

A ∈ CR ⇔ (∀x, y ∈ A)(∀z ∈ X \ A)((zRx ⇔ zRy) ∧ (xRz ⇔ yRz))
⇔ (∀x, y ∈ A)(∀z ∈ X \ A)((xRtz ⇔ yRtz) ∧ (zRtx ⇔ zRty))
⇔ A ∈ CRt .

Remark 1: If A is a clonal set of a relation R on a set X, then Ac does not necessarily
need to be a clonal set of R, as can be seen in the following example. Consider the set
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X = {a, b, c} and the relation R = {(a, c), (b, c)}. Since A = {a} is a singleton, it holds that
A ∈ CR, while one can easily verify that Ac = {b, c} �∈ CR.

Next, we discuss the intersection and union of clonal sets. First, we prove that any family
of clonal sets is closed under intersection.
Proposition 2.8: Let R be a relation on a set X. For any family (Ai)i∈I of clonal sets of R,
it holds that ∩i∈IAi ∈ CR.
Proof: Let x, y ∈ ∩i∈IAi and z ∈ X \ ∩i∈IAi. There exists i0 ∈ I such that x, y ∈ Ai0 and
z ∈ X \ Ai0 . Since Ai0 ∈ CR, it follows that zRx ⇔ zRy and xRz ⇔ yRz. Hence, it holds
that ∩i∈IAi ∈ CR.

In general, the union of a family of clonal sets does not need to be a clonal set, as can be
seen in Example 2.5. For instance, {a}, {b} ∈ CRD , while {a}∪{b} = {a, b} /∈ CRD . However,
in case their intersection is not empty, the union of a family of clonal sets is assured to be
a clonal set.
Proposition 2.9: Let R be a relation on a set X. For any family (Ai)i∈I of clonal sets of R,
if ∩i∈IAi �= ∅, then it holds that ∪i∈IAi ∈ CR.
Proof: Let x, y ∈ ∪i∈IAi and z ∈ X \ ∪i∈IAi. Hence, z ∈ X \ Ai, for any i ∈ I , and there
exist j, k ∈ I such that x ∈ Aj and y ∈ Ak. Since ∩i∈IAi �= ∅, it follows that Aj ∩ Ak �= ∅,
which implies that there exists t such that t ∈ Aj and t ∈ Ak. Since Aj,Ak ∈ CR, x, t ∈ Aj
and y, t ∈ Ak, it holds that

(zRx ⇔ zRt ⇔ zRy) ∧ (xRz ⇔ tRz ⇔ yRz) .

This implies that zRx ⇔ zRy and xRz ⇔ yRz. Hence, ∪i∈IAi ∈ CR.
Corollary 2.10: Let R be a relation on a set X. For any x, y, z ∈ X such that x ≈R y and
y ≈R z, it holds that {x, y, z} ∈ CR.

For any n ∈ N∗ = {1, 2, 3, . . .}, the nth power Rn of a relation R on X is recursively
defined as:

(R1 = R) and (∀n ∈ N∗)(Rn+1 = Rn ◦ R) .

Let R∗ denote the transitive closure of a relation R on a set X, i.e. the smallest transitive
relation on X that contains R. The transitive closure R∗ can be characterized as:

R∗ =
⋃
k≥1

Rk .

The transitive closure of a reflexive (resp. symmetric) relation is reflexive (resp. symmetric)
as well. For more details on transitive closures, we refer to Lidl and Pilz (1998).
Proposition 2.11: Let R be a relation on a set X and n ∈ N∗. It holds that

C n⋃
i=1

Ri
⊆ Cn+1⋃

i=1
Ri

.
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Figure 4. Graph of the relation R (left) and of its transitive closure R∗ (right) in Example 2.13.

Proof: Let us denote Rn :=
n⋃
i=1R

i and Rn+1 :=
n+1⋃
i=1R

i. Let A ∈ CRn , then we need to
prove thatA ∈ CRn+1 . Consider x, y ∈ A and z ∈ X \A such that zRn+1x (the case in which
xRn+1z is proved analogously). It follows that zRnx or zRn+1x.

(a) If zRnx, then, as A ∈ CRn , x, y ∈ A and z ∈ X \ A, it follows that zRny. Hence,
zRn+1y.

(b) If zRn+1x, then there exists t ∈ X such that zRt and tRnx. This implies that zRnt
and tRnx. We distinguish two cases: t ∈ A or t �∈ A.
(α) If t ∈ A, then, as A ∈ CRn , t, y ∈ A, z ∈ X \ A and zRnt, it follows that zRny.

Hence, zRn+1y.
(β) If t �∈ A, then, as A ∈ CRn , x, y ∈ A, t ∈ X \ A and tRnx, it follows that tRny.

Since zRt and tRny, it follows that zRn+1y. Hence, zRn+1y.

We conclude that CRn ⊆ CRn+1 .

Corollary 2.12: Let R be a relation on a set X and R∗ be its transitive closure. It holds that
CR ⊆ CR∗ .

Note that the converse of the above corollary does not necessarily hold, as can be seen
in the following example.
Example 2.13: Let R be the relation on X = {a, b, c, d} defined as R = {(a, c), (a, d),
(b, c), (c, d)}. One easily verifies that R∗ = {(a, c), (a, d), (b, c), (b, d), (c, d)}. It holds that
{a, b, c} ∈ CR∗ , while {a, b, c} �∈ CR (Figure 4).

Finally, we show that the intersection of the sets of clonal sets of two relations can be
expressed in terms of the clonal sets of the intersection, union and set difference of both
relations.
Proposition 2.14: Let R and S be two relations on a set X. The following statements hold:

(i) CR ∩ CS = CR∩S ∩ CR\S ∩ CS\R;
(ii) CR ∩ CS = CR∪S ∩ CR\S ∩ CS\R.

Proof:

(i) We need to prove that CR ∩ CS ⊆ CR∩S ∩ CR\S ∩ CS\R and that CR∩S ∩ CR\S ∩ CS\R ⊆
CR ∩ CS.
(a) Let A be a subset of X such that A ∈ CR ∩ CS. For any x, y ∈ A and for any

z ∈ X \ A, it holds that

z(R ∩ S)x ⇔ (zRx ∧ zSx)
⇔ (zRy ∧ zSy)
⇔ z(R ∩ S)y .
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Similarly, it holds that

x(R ∩ S)z ⇔ y(R ∩ S)z .

Hence, CR ∩ CS ⊆ CR∩S.
Moreover, for any z ∈ X \ A and for any x, y ∈ A, it holds that

z(R \ S)x ⇔ (zRx ∧ zScx)
⇔ (zRy ∧ zScy)
⇔ z(R \ S)y .

Similarly, it holds that

x(R \ S)z ⇔ y(R \ S)z .

Hence, CR ∩ CS ⊆ CR\S. The fact that CR ∩ CS ⊆ CS\R is proved analogously.
(b) Let A be a subset of X such that A ∈ CR∩S ∩ CR\S ∩ CS\R. For any x, y ∈ A and

for any z ∈ X \ A, it holds that
zRx ⇔ zRx ∧ (zSx ∨ zScx)

⇔ (z(R ∩ S)x) ∨ (z(R \ S)x)
⇔ (z(R ∩ S)y) ∨ (z(R \ S)y)
⇔ zRy .

Similarly, it holds that

xRz ⇔ yRz .

Hence, CR∩S ∩ CR\S ∩ CS\R ⊆ CR.
Similarly, it also holds that CR∩S ∩ CR\S ∩ CS\R ⊆ CS.

Hence, CR ∩ CS = CR∩S ∩ CR\S ∩ CS\R.
(ii) From (i), it follows that CRc ∩ CSc = CRc∩Sc ∩ CRc\Sc ∩ CSc\Rc . Since CRc = CR,

CSc = CS, CRc∩Sc = C(R∪S)c = CR∪S (see Proposition 2.7), Rc \ Sc = S \ R and
Sc \ Rc = R \ S, it follows that CR ∩ CS = CR∪S ∩ CR\S ∩ CS\R.

3. The lattice structure of the set of clonal sets

3.1. The clonal closure operator

The notion of closure operator is a fundamental notion in mathematics (Moore, 1910).
Formally, a closure operator on a set X is a mapping cl : P(X) → P(X) satisfying
extensivity (A ⊆ cl(A), for any A ∈ P(X)), monotonicity (A ⊆ B implies cl(A) ⊆ cl(B),
for any A,B ∈ P(X)) and idempotency (cl(cl(A)) = cl(A), for any A ∈ P(X)). A subset
A of X is called closed if cl(A) = A. A related notion is that of a closure system, a subset E
of P(X) that is closed under arbitrary intersections ((Ai)i∈I ∈ E implies ∩i∈IAi ∈ E) and
contains X. Propositions 2.6 and 2.8 imply that the set of clonal sets of a given relation is a
closure system.
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Figure 5. Hasse diagram of the lattice N5 (left) andM3 (right).

It is well known that a closure system defines a closure operator and vice-versa (see, e.g.
Casparda and Monjardet 2003). Thus, we can introduce a closure operator related to the
set of clonal sets of a given relation, and call it clonal closure operator.
Proposition 3.1: Let R be a relation on a set X. The mapping clR : P(X) → CR
defined by

clR(A) =
⋂

{B ∈ CR | A ⊆ B}
is a closure operator on X.

For any subsetA ofX, clR(A) is called the clonal closure ofA. Trivially, the clonal closure
operator characterizes whether a set is a clonal set or not, i.e. a set A is a clonal set (of a
given relation R) if and only if clR(A) = A.
Example 3.2: Consider the relation RB given in Example 2.2. For instance, the clonal
closure of {e, h}, i.e. the smallest clonal set containing {e, h}, is given by

clRB({e, h}) = {e, f , h, i} ,

while the clonal closure of {e, g} is given by

clRB({e, g}) = {e, f , g , h, i} .

3.2. The clonal lattice

A (non-empty) poset (L,≤ ) is called a lattice if any two elements x and y have a greatest
lower bound, denoted by inf {x, y} and called the infimum of x and y, and a smallest upper
bound, denoted by sup{x, y} and called the supremumof x and y. Similarly, a lattice (L,≤ )

is called complete if every subset A of L has both a greatest lower bound, denoted by inf A
and called the infimum of A, and a smallest upper bound, denoted by supA and called
the supremum of A. A lattice (L,≤ ) is called bounded if it has a smallest and a greatest
element, respectively denoted by 0 and 1. A non-empty subset M of a lattice (L,≤ ) is
called a sublattice of L if, for any x, y ∈ M, it holds that inf {x, y} ∈ M and sup{x, y} ∈ M. A
complemented lattice (L,≤ ) is a bounded lattice inwhich any element x has a complement,
i.e. there exists an element y ∈ L such that inf {x, y} = 0 and sup{x, y} = 1. The relevant
notions of distributivity and modularity of a lattice are characterized by means of the
lattices N5 andM3 illustrated in Figure 5. In particular, a lattice is modular if and only if it
has no sublattice of the form N5, and distributive if and only if it has no sublattice of the
formM3 or N5. For more details, we refer to Davey and Priestley (2002).
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Figure 6.Hasse diagram of the clonal lattice of the relation associated with the diamond graph (left) and
of the clonal lattice of the relation associated with the butterfly graph (right).

A closure operator naturally equips the corresponding closure system with a complete
lattice structure.

Theorem 3.3 (Davey and Priestley 2002): Let cl be a closure operator on a set X. Then the
closure system E = {A ∈ P(X) | cl(A) = A} ordered by set inclusion is a complete lattice
(E ,⊆ ) in which

inf
i∈I Ai = ∩

i∈IAi and sup
i∈I

Ai = cl
(

∪
i∈IAi

)
,

for any family (Ai)i∈I in E , and 0 = ∅ and 1 = X.

In particular, we conclude that, for any relation R on X, the poset (CR,⊆ ) is a complete
lattice – called the clonal lattice (of R) – in which the infimum is given by the intersection
(∩), the supremum is given by the clonal closure of the union (clR ◦ ∪), and 0 = ∅ and
1 = X. It is important to mention that, although the clonal lattice is complete, it is not
a complete sublattice of (P(X),⊆ ). In general, the clonal lattice is neither modular, nor
complemented, as can be seen in the following examples.
Example 3.4: Consider again the relations RD and RB given in Example 2.2. The Hasse
diagrams of the clonal lattices of RD and RB are shown in Figure 6. Since N5 = {∅, {b}, {c},
{b, d},X} is a sublattice of CRD and N5 = {∅, {e}, {h}, {h, i}, {e, f , h, i}} is a sublattice of CRB ,
it follows that CRD and CRB are not modular, and, hence, also not distributive. Note that
both CRD and CRB are complemented (although the complement is not unique).

Example 3.5: Consider the set X = {1, 2, 3} equipped with the usual order relation ≤. It
holds that C≤ = {∅, {1}, {2}, {3}, {1, 2}, {2, 3},X}. The Hasse diagram of the clonal lattice
of ≤ is shown in Figure 7. Since N5 is a sublattice of C≤ (consider, for example, N5 =
{∅, {1}, {3}, {2, 3},X}), it follows that C≤ is not modular, and, hence, also not distributive.
Moreover, it is not complemented either. Indeed, there does not exist a clonal set A ∈ C≤
such that {2} ∩ A = ∅ and cl≤({2} ∪ A) = X.

3.3. Principal filters of the clonal lattice

Next, we study the (principal) filters of the clonal lattice. Recall that a nonempty subset F
of a poset (P,≤ ) is called a filter if the following conditions hold:
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Figure 7. Hasse diagram of the clonal lattice of the order relation≤ in Example 3.5.

(i) for any x, y ∈ F , there exists an element z ∈ F such that z ≤ x and z ≤ y;
(ii) for any x ∈ F and y ∈ P, x ≤ y implies that y ∈ F , i.e. F is an upper set.

The principal filter generated by an element x ∈ P is the smallest filter that contains x and
is given by the set {y ∈ P | x ≤ y}.

In the following, we prove that the principal filters of the clonal lattice are complete
sublattices of the clonal lattice in which the supremum operation is now given by the
standard union.
Theorem 3.6: Let R be a relation on a set X, B be a non-empty clonal set of R and FB be
the principal filter of (CR,⊆ ) generated by B, i.e. FB = {C ∈ CR | B ⊆ C}. Then it holds
that (FB,⊆ ) is a complete sublattice of (CR,⊆ ) in which

inf
i∈I Ai = ∩

i∈IAi and sup
i∈I

Ai = ∪
i∈IAi ,

for any family (Ai)i∈I in FB, and 0 = B and 1 = X.

Proof: Let (Ai)i∈I be a family in FB. Since CR is a closure system, it follows that ∩i∈IAi is a
clonal set of R. Since B ⊆ ∩i∈IAi, it follows that ∩i∈IAi ∈ FB. Also, from Proposition 2.9,
it follows that ∪i∈IAi is a clonal set of R. Hence,

(
clR ◦ ∪i∈I

)
Ai := clR

(∪i∈IAi
) = ∪i∈IAi.

Since B ⊆ ∪i∈IAi, it follows that∪i∈IAi ∈ FB. Finally, it is clear that 0 = B and 1 = X.

The above theorem implies that the principal filters of the clonal lattice (CR,⊆ ) are
complete sublattices of (P(X),⊆ ).

4. The clonal distancemetric

For any integer m, we can define a natural relation expressing which pairs of elements
belong to a clonal set of size at mostm.
Definition 4.1: Let R be a relation on a set X. For any m ∈ N∗, the relation ϕm

R on X is
defined as

ϕm
R = {(x, y) ∈ X2 | (∃A ∈ CR)(x, y ∈ A ∧ |A| ≤ m)} .

It is straightforward to prove that the relations (ϕm
R )m∈N∗ constitute a nested family.

Proposition 4.2: Let R be a relation on a set X. For anym ∈ N∗, it holds that ϕm
R ⊆ ϕm+1

R .
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Some basic properties of the relation ϕm
R depend on the integerm.

Proposition 4.3: Let R be a relation on a set X.

(i) For any x, y ∈ X, it holds that x = y if and only if xϕ1
Ry.

(ii) For any x, y ∈ X, it holds that x ≈R y if and only if xϕ2
Ry.

Proof:

(i) On the one hand, for any x, y ∈ X such that x = y, it holds that {x} = A ∈ CR,
x, y ∈ A and |A| = 1 ≤ 1. Therefore, xϕ1

Ry. On the other hand, for any x, y ∈ X
such that xϕ1

Ry, it holds that there existsA ∈ CR satisfying that x, y ∈ A and |A| = 1.
Therefore, x = y.

(ii) On the one hand, for any x, y ∈ X such that x ≈R y, we distinguish two cases: x = y
and x �= y. In case x = y, from (i) we know that xϕ1

Ry, and, from Proposition 4.2, we
conclude that xϕ2

Ry. In case x �= y, it holds that {x, y} = A ∈ CR (and, additionally,
x, y ∈ A and |A| = 2 ≤ 2). Therefore, xϕ2

Ry. On the other hand, for any x, y ∈ X
such that xϕ2

Ry, it holds that there existsA ∈ CR satisfying that x, y ∈ A and |A| = 2.
Therefore, x ≈R y.

Obviously, the relations (ϕm
R )m∈N∗ are tolerance relations.

Proposition 4.4: Let R be a relation on a set X. For anym ∈ N∗, ϕm
R is a tolerance relation.

Proof: For any x ∈ X, due to the fact that {x} ∈ CR and |{x}| ≤ m, for any m ≥ 1,
it follows that xϕm

R x. Hence, ϕm
R is reflexive, for any m ≥ 1. The symmetry property is

evident. We conclude that, for anym ≥ 1, ϕm
R is a tolerance relation.

Obviously, as ϕ1
R is the identity relation, it trivially is an equivalence relation, i.e. a

relation that is reflexive, symmetric and transitive. However, for any m ≥ 2, the relation
ϕm
R does not necessarily need to be an equivalence relation. For instance, consider an integer

n and the set {1, . . . , n} equipped with the usual order relation ≤. It holds that 1ϕm≤m and
mϕm≤ (2m − 1), for any 2 ≤ m ≤ n+1

2 . However, as it does not hold that 1ϕm≤ (2m − 1), we
conclude that the transitivity property is not fulfilled.

For defining the clonal distancemetric,we assume that the setX is finite in the remainder
of this section.
Proposition 4.5: Let R be a relation on a finite set X of cardinality n. For any x, y ∈ X, it
holds that xϕn

Ry.

Proof: We recall that X ∈ CR. Therefore, for any x, y ∈ X, it holds that x, y ∈ A = X and
|A| ≤ n. Therefore, xϕn

Ry.

Note that the relations (ϕm
R )nm=1 can be characterized in terms of the clonal closure of

all possible subsets of cardinality two.
Proposition 4.6: Let R be a relation on a finite set X of cardinality n. For any x, y ∈ X
and any m ∈ N∗, it holds that xϕm

R y if and only if |clR({x, y})| ≤ m.

Proof: Consider m ∈ N∗ and x, y ∈ X such that xϕm
R y. Hence, there exists A ∈ CR such

that x, y ∈ A and |A| ≤ m. By definition of the clonal closure of {x, y}, it is the smallest
clonal set containing {x, y}. Therefore, clR({x, y}) ⊆ A and |clR({x, y})| ≤ m.
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Conversely, consider m ∈ N∗ and x, y ∈ X such that |clR({x, y})| ≤ m. Note that for
A = clR({x, y}) it holds that A ∈ CR, x, y ∈ A and |A| ≤ m. Therefore, xϕm

R y.

The corresponding clonal distance metric is then introduced as a tool allowing to
compare how far two elements are from being clones.
Definition 4.7: Let R be a relation on a finite set X of cardinality n. For any x, y ∈ X, the
clonal distance dR(x, y) between x and y is defined as

dR(x, y) = min{m ∈ {1, . . . , n} | xϕm
R y} − 1 .

Remark 2: As a consequence of Proposition 4.6, it holds that dR(x, y) = |clR({x, y})|−1,
for any x, y ∈ X.

An important observation concerns the fact that the clonal distance metric effectively
constitutes a distance metric on X, thereby justifying its name.
Proposition 4.8: Let R be a relation on a finite set X of cardinality n. The clonal distance
metric dR : X × X → R defines a distance metric on X.

Proof: Non-negativity. For any x, y ∈ X, it holds that xϕn
Ry. Therefore, it holds that

min{m ∈ {1, . . . , n} | xϕm
R y} ≥ 1 and, therefore, dR(x, y) ≥ 0.

Identity of indiscernibles. For any x, y ∈ X, it holds that

dR(x, y) = 0 ⇔ min{m ∈ {1, . . . , n} | xϕm
R y} = 1

⇔ xϕ1
Ry

⇔ x = y .

Symmetry. For any x, y ∈ X, it holds that

dR(x, y) = min{m ∈ {1, . . . , n} | xϕm
R y} − 1

= min{m ∈ {1, . . . , n} | yϕm
R x} − 1

= dR(y, x) .

Triangle inequality. For any x, y, z ∈ X, it holds that

clR({x, z}) ⊆ clR({x, y} ∪ {y, z}) ⊆ clR({x, y}) ∪ clR({y, z}) .

Removing {x} on both sides, it follows that

clR({x, z})\{x} ⊆ (clR({x, y})\{x}) ∪ (clR({y, z})\{x}) .

We conclude that
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dR(x, z) = |clR({x, z})| − 1
= |clR({x, z})\{x}|
≤ |(clR({x, y})\{x}) ∪ (clR({y, z})\{x})|
≤ |clR({x, y})\{x}| + |clR({y, z})\{x}| − |{y}|
≤ dR(x, y) + dR(y, z) .

Example 4.9: Consider again the relations RD and RB given in Example 2.2. The clonal
distance metrics associated with both relations are represented in the following tables:

dRD a b c d

a 0 3 1 3
b 3 0 3 1
c 1 3 0 3
d 3 1 3 0

dRB e f g h i

e 0 1 4 3 3
f 1 0 4 3 3
g 4 4 0 4 4
h 3 3 4 0 1
i 3 3 4 1 0

5. Some special cases

In case the given relation is an equivalence relation or a weak/total order relation, its clonal
sets can be easily characterized. In the former case, a clonal set is either a subset of a unique
equivalence class or the union of two or more equivalence classes. Similarly, in the latter
case, a clonal set is either a subset of a unique equivalence class or the union of two ormore
consecutive equivalence classes.

5.1. Equivalence relations

For a given equivalence relation E on a set X, the equivalence class of an element x ∈ X is
defined by [x]E = {y ∈ X | xEy}.
Proposition 5.1: Let E be an equivalence relation on a set X. A subset A of X is a clonal
set of E if and only if it is either a subset of an equivalence class of E or the union of two or
more equivalence classes of E.

Proof: ⇒ Let A ∈ CE . If A = ∅, then it clearly holds that A ⊂ [x]E , for any x ∈ X. If
A �= ∅, then there exists a such that a ∈ A. We distinguish two cases:

(i) For any x ∈ A, it holds that xEa. It immediately follows that A ⊆ [a]E .
(ii) There exists b ∈ A such that bEca.
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(a) We prove that [a]E ⊆ A and [b]E ⊆ A. Assume that [a]E � A or [b]E � A. If
[a]E � A, then it follows that there exists c such that cEa∧ c �∈ A. Since A ∈ CE ,
c ∈ X \A, a, b ∈ A and cEa, it holds that cEb. Since E is an equivalence relation,
it follows that bEa, a contradiction. The other case is proved analogously. We
conclude that [a]E ⊆ A , [b]E ⊆ A and [a]E �= [b]E .

(b) We prove that, for any x ∈ A, it holds that [x]E ⊆ A. The result is already
proved for x = a. Consider x �= a and suppose that there exists x0 ∈ X
such that x0 ∈ [x]E and x0 �∈ A. Since A ∈ CE , x0 ∈ (X \ A), x, a ∈ A and
x0Ex, it follows that x0Ea. Hence, x0 ∈ [a]E . Since [a]E ⊆ A, it follows that
x0 ∈ A, a contradiction. We conclude that, for any x ∈ A, [x]E ⊆ A. Hence,
∪x∈A[x]E ⊆ A, and, obviously, A = ∪x∈A[x]E .

Since a, b ∈ A, [a]E �= [b]E and A = ∪x∈A[x]E , we conclude that A is the union of
two or more equivalence classes of E.

⇐ Let A ⊆ X.

(a) If A is a subset of an equivalence class [a]E , then for any x, y ∈ A and any z ∈ X \A,
it follows that x, y ∈ [a]E , which implies that zEx ⇔ zEy and xEz ⇔ yEz. Hence,
A ∈ CE .

(b) If A is the union of two or more equivalence classes, then for any x, y ∈ A and
any z ∈ X \ A, there exist a, b such that x ∈ [a]E ⊆ A and y ∈ [b]E ⊆ A (note
that [a]E might be equal to [b]E). This implies that zEcx, zEcy, xEcz and yEcz
(otherwise z ∈ [a]E ∪ [b]E , and hence z ∈ A, a contradiction). Thus, zEx ⇔ zEy
and xEz ⇔ yEz. Hence, A ∈ CE .

Example 5.2: Consider the equivalence relation E on the set X = {a, b, c, d, e, f } consist-
ing of three equivalence classes: [a]E , [b]E = [c]E and [d]E = [e]E = [f ]E . The set of clonal
sets of E is given by:

CE =
{ ∅, {a}, {b}, {c}, {d}, {e}, {f }, {b, c}, {d, e}, {d, f }, {e, f },

{a, b, c}, {d, e, f }, {a, d, e, f }, {b, c, d, e, f }, {a, b, c, d, e, f }
}
,

resulting in the clonal lattice displayed in Figure 8.
The clonal distance metric is represented in the following table:

dE a b c d e f

a 0 2 2 3 3 3
b 2 0 1 4 4 4
c 2 1 0 4 4 4
d 3 4 4 0 1 1
e 3 4 4 1 0 1
f 3 4 4 1 1 0

5.2. Weak order relations

A relation � on a set X is called a weak order relation if it is reflexive, transitive and
complete. Note that a weak order relation can be understood as a total order relation in
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Figure 8. Hasse diagram of the clonal lattice of the equivalence relation E in Example 5.2.

which ties between consecutive elements are allowed. Any weak order relation � can be
partitioned in two relations

< = {(x, y) ∈ X2 | x � y ∧ y �c x} ,
∼ = {(x, y) ∈ X2 | x � y ∧ y � x} ,

where the relation < is irreflexive, transitive and antisymmetric and the relation ∼ is an
equivalence relation.

An equivalence class [a]∼ is said to be strictly smaller than another equivalence class
[b]∼ if, for any x ∈ [a]∼ and any y ∈ [b]∼, it holds that x < y. Analogously, an equivalence
class [a]∼ is said to be strictly greater than another equivalence class [b]∼ if, for any
x ∈ [a]∼ and any y ∈ [b]∼, it holds that y < x. Two equivalence classes [a]∼ and [b]∼ are
said to be consecutive if there does not exist an equivalence class [c]∼ such that, for any
x ∈ [a]∼, any y ∈ [b]∼ and any z ∈ [c]∼, it holds that x < z < y or y < z < x.
Proposition 5.3: Let � be a weak order relation on a set X. A subset A of X is a clonal set
of� if and only if it is either a subset of an equivalence class of∼ or the union of two or more
consecutive equivalence classes of ∼.

Proof: ⇒ Let A ∈ C�. If A = ∅, then it clearly holds that A ⊂ [x]∼, for any x ∈ X. If
A �= ∅, then there exists a such that a ∈ A. We distinguish two cases:

(i) For any x ∈ A, it holds that x ∼ a. It immediately follows that A ⊆ [a]∼.
(ii) There exists b ∈ A such that b ∼c a. We will prove that A is the union of two or

more consecutive equivalence classes.
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(a) We prove that [a]∼ ⊆ A and [b]∼ ⊆ A (obviously, [a]∼ �= [b]∼). Suppose that
there exists c such that c ∼ a (thus c � a and a � c) and c /∈ A. Since A ∈ C�,
c ∈ X\A, a, b ∈ A and c � a and a � c, it follows that c � b and b � c. This
implies that b ∼ c and, therefore, a ∼ b, a contradiction. We conclude that
[a]∼ ⊆ A. The proof for [b]∼ ⊆ A is analogous.

(b) We prove that, for any x ∈ A, it holds that [x]∼ ⊆ A. Let x ∈ A and suppose
that there exists x0 ∈ [x]∼ such that x0 /∈ A. The result is already proved for
x = a, therefore, we prove it for x �= a. Since A ∈ C�, x0 ∈ X\A, x, a ∈ A and
x0 � x and x � x0, it follows that x0 � a and a � x0. This implies that a ∼ x0
and, therefore, x0 ∈ [a]∼ ⊆ A, a contradiction.

We conclude that A is the union of two or more equivalence classes of �. We now
prove that all equivalence classes are consecutive. Suppose that there exists a, b ∈ A
and c /∈ A such that a � c � b, b �c a, b �c c and c �c a. Since A ∈ C�, a, b ∈ A,
c /∈ A and a � c, it follows that b � c, a contradiction.

⇐ Let A ⊆ X.

(a) IfA is a subset of an equivalence class [a]∼, then for any x, y ∈ A and any z ∈ X \A,
it immediately follows that z � x ⇔ z � y and x � z ⇔ y � z. Hence, A ∈ C�.

(b) If A is the union of two or more consecutive equivalence classes, then, for any
x, y ∈ A and any z ∈ X \ A, z belongs to an equivalence class strictly greater than
the equivalence classes of x and y or to an equivalence class strictly smaller than the
equivalence classes of x and y. Thus, z � x ⇔ z � y and x � z ⇔ y � z. Hence,
A ∈ C�.

Corollary 5.4: Let ≤ be a total order relation on a set X. A non-empty subset A of X is a
clonal set of ≤ if and only if it is a set of consecutive elements of ≤.

Note that the definition of a clonal set coincides with that commonly accepted in social
choice theory (Tideman 1987; Zavist and Tideman 1989) when restricted to total order
relations or rankings (strict total order relations).3 However, in case weak order relations
or rankings with ties are considered, both definitions slightly differ since in social choice
theory a clonal set is characterized as an equivalence class of∼ or the union of two or more
consecutive equivalence classes of∼ (note that proper subsets of an equivalence class of∼
are not considered to be clonal sets).
Example 5.5: Consider the weak order relation� on the setX = {a, b, c, d, e, f } in which
a < b ∼ c < d ∼ e ∼ f . The set of clonal sets of � is given by:

C� =
{ ∅, {a}, {b}, {c}, {d}, {e}, {f }, {b, c}, {d, e}, {d, f }, {e, f },

{a, b, c}, {d, e, f }, {b, c, d, e, f }, {a, b, c, d, e, f }
}
,

resulting in the clonal lattice displayed in Figure 9. It must be remarked that only {b, c},
{a, b, c}, {d, e, f }, {b, c, d, e, f } and {a, b, c, d, e, f } are clonal sets in the sense of social choice
theory.

The corresponding clonal distance metric is represented in the following table:
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d� a b c d e f

a 0 2 2 5 5 5
b 2 0 1 4 4 4
c 2 1 0 4 4 4
d 5 4 4 0 1 1
e 5 4 4 1 0 1
f 5 4 4 1 1 0

Figure 9. Hasse diagram of the clonal lattice of the weak order relation� in Example 5.5.

6. Conclusions

In this work, we have generalized the notion of clone relation of a binary relation into the
notion of clonal set. In particular, pairs of elements related by the clone relation turn out
to be clonal sets of cardinality two. This generalization leads to many interesting results,
such as the fact that the set of clonal sets is a complete lattice with the intersection and
the clonal closure of the union as infimum and supremum. Also, the introduction of the
clonal distancemetric results in a natural way of turning a set equipped with a relation into
a metric space.

Notes

1. Note that the term clone is also an old acquaintance of algebraists (Post 1941), however,
carrying a totally different meaning.

2. In this paper, a relation R is identified with its characteristic mapping χR, i.e. χR(x, y) = 1
means that xRy and χR(x, y) = 0 means that xRcy. In a finite setting, a relation can be
conveniently represented as a matrix such that Rij = χR(xi , xj).
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3. Actually, in social choice theory it is required that the cardinality of the set is greater than or
equal to two. Thus, the empty set and all singletons are not clonal sets in the sense of social
choice theory.
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