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ON THE COMPATIBILITY OF A CRISP RELATION WITH A
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B. DE BAETS, H. BOUREMEL AND L. ZEDAM

This paper is dedicated to Professor L. A. Zadeh on the occasion of his 95th birthday
and the 50th year of the birth of fuzzy logic

Abstract. In a recent paper, De Baets et al. have characterized the fuzzy

tolerance and fuzzy equivalence relations that a given strict order relation is
compatible with. In this paper, we generalize this characterization by consider-

ing an arbitrary (crisp) relation instead of a strict order relation, while paying

attention to the particular cases of a reflexive or irreflexive relation. The rea-
soning largely draws upon the notion of the clone relation of a (crisp) relation,

introduced recently by Bouremel et al., and the partition of this clone relation

in terms of three different types of pairs of clones. More specifically, reflexive
related clones and irreflexive unrelated clones turn out to play a key role in the

characterization of the fuzzy tolerance and fuzzy equivalence relations that a

given (crisp) relation is compatible with.

1. Introduction

The notion of compatibility of a given fuzzy relation with another one, exten-
sively studied in [16], establishes an interesting relation on the set of fuzzy relations.
It generalizes the notion of extensionality, introduced by Höhle and Blanchard [15],
or the equivalent notion of compatibility, as it was coined by Bělohlávek [2], of
a fuzzy relation w.r.t. a fuzzy equality relation. This notion appears, among
others, in the study of fuzzy lattices [1, 17, 23, 25], in the study of fuzzy func-
tions [12, 18, 19, 20], in the study of fuzzy order relations [3, 5, 6, 13] and in the
lattice-theoretic approach to concept lattices [2].

Given the importance of fuzzy tolerance and fuzzy equivalence relations in the
theory and applications of fuzzy sets, it is not surprising that compatibility has
mainly been studied for a given fuzzy relation with the mentioned types of fuzzy
relations. In this context, some of the present authors have focused their attention
on the case where the given fuzzy relation is simply a crisp (strict) order relation,
leading to surprising negative results as well as interesting representation theo-
rems [11]. These results were obtained thanks to the introduction of the notion of
clone relation associated with a strict order relation. Recently, it has been shown
how a clone relation can be associated with any crisp relation [7]. Informally, two
elements are called clones if they are related in the same way w.r.t. every other
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element. This allows us to take a step further in this paper and aim at character-
izing the fuzzy tolerance and fuzzy equivalence relations a given crisp relation is
compatible with.

This paper is structured as follows. After recalling some basic definitions and
properties in Section 2, in particular related to the clone relation of a crisp relation,
we study two auxiliary relations associated with this clone relation in Section 3.
These auxiliary relations respectively gather the reflexive related clones and the ir-
reflexive unrelated clones. In Section 4, we study the compatibility of a given crisp
relation with the latter auxiliary relations. The results are exploited in Section 5 to
characterize the fuzzy tolerance and fuzzy equivalence relations a given crisp rela-
tion is compatible with. These characterizations turn out to be pleasingly elegant
and insightful. Finally, we present some conclusions and discuss future research in
Section 6.

2. Basic Concepts

This section serves an introductory purpose. First, we recall some basic concepts
and properties of binary relations and of L-relations. Second, we recall the notion
of clone relation and its properties.

2.1. Binary Relations. A crisp relation (relation, for short) R on a set X is a
subset of X2, i.e., a set of couples (x, y) ∈ X2. We usually write xRy instead of
(x, y) ∈ R. Two elements x and y of a set X equipped with a relation R are called
unrelated elements, denoted by x ‖R y, if it neither holds that xRy nor that yRx.
Otherwise, they are called related elements, denoted by x ∦R y. When no confusion
can occur, we will write x ‖ y or x ∦ y. We denote by Rc the complement of the
relation R on X, i.e., for any x, y ∈ X, xRcy denotes the fact that (x, y) 6∈ R. We
denote by Rt the transpose (converse) of the relation R on X, i.e., for any x, y ∈ X,
xRty denotes the fact that yRx. Finally, we denote by Rd the dual of the relation
R on X, i.e., for any x, y ∈ X, xRdy denotes the fact that yRcx.

A binary relation R on a set X is called:

(i) reflexive: xRx, for any x ∈ X;
(ii) irreflexive: xRcx, for any x ∈ X;
(iii) symmetric: xRy implies that yRx, for any x, y ∈ X;
(iv) antisymmetric: xRy and yRx imply that x = y, for any x, y ∈ X;
(v) transitive: xRy and yRz imply that xRz, for any x, y, z ∈ X;
(vi) antitransitive: xRy and yRz imply that xRcz, for any x, y, z ∈ X.

A relation R on a set X is called a pseudo-order relation if it is reflexive and
antisymmetric [22]. A transitive pseudo-order relation 6 on a set X is called an
order relation. A set X equipped with an order relation 6 is called a partially
ordered set (poset, for short), denoted by (X,6). For more details on relations, we
refer to [9, 21].

2.2. Lattices. A poset (L,≤) (see, e.g., [9]) is called a lattice if any two elements
x and y have a greatest lower bound, denoted x _ y and called the meet (infimum)
of x and y, as well as a smallest upper bound, denoted x ^ y and called the join
(supremum) of x and y. A lattice can also be defined as an algebraic structure,
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namely a set L equipped with two binary operations _ and ^ that are idempotent,
commutative and associative, and satisfy the absorption laws (x _ (x ^ y) = x
and x ^ (x _ y) = x, for any x, y ∈ L). The order relation and the meet and join
operations are related as follows: x ≤ y if and only if x _ y = x; x ≤ y if and only
if x ^ y = y.

A bounded lattice is a lattice that additionally has a greatest element 1 and a
smallest element 0, which satisfy 0 ≤ x ≤ 1 for every x in L. Often, the notation
(L,≤,_,^, 0, 1) is used.

2.3. Fuzzy Relations. The notion of an L-relation on a set X generalizes the
classical notion of a relation by expressing degrees of relationship in some bounded
lattice (L,≤,_,^, 0, 1) [14]. A binary L-relation (L-relation, for short) R on X is
a mapping R : X ×X → L. If L = {0, 1}, then relations are obtained.

A triangular norm (t-norm, for short) ∗ on a bounded lattice L (see, e.g., [10]) is
a binary operation on L that is commutative (i.e., α ∗ β = β ∗ α, for any α, β ∈ L)
and associative (i.e., α ∗ (β ∗ γ) = (α ∗ β) ∗ γ, for any α, β, γ ∈ L), has neutral
element 1 (i.e., α ∗ 1 = α, for any α ∈ L) and is order-preserving (i.e., if α ≤ β,
then α ∗ γ ≤ β ∗ γ, for any α, β, γ ∈ L). Throughout this paper, L always denotes
a bounded lattice (L,≤,_,^, 0, 1) and ∗ a t-norm on it.

The following properties of an L-relation R are of interest in this paper (see,
e.g., [4, 8, 24]).

(i) reflexivity : R(x, x) = 1, for any x ∈ X;
(ii) symmetry : R(x, y) = R(y, x), for any x, y ∈ X;

(iii) ∗-transitivity : R(x, y) ∗R(y, z) ≤ R(x, z), for any x, y, z ∈ X;
(iv) separability : R(x, y) = 1 implies x = y, for any x, y ∈ X.

An L-relation R1 is said to be included in an L-relation R2, denoted R1 ⊆ R2, if
R1(x, y) ≤ R2(x, y), for any x, y ∈ X. The intersection of two L-relations R1 and R2

on X is the L-relation R1∩R2 on X defined by R1∩R2(x, y) = R1(x, y)∧R2(x, y),
for any x, y ∈ X. Similarly, the union of two L-relations R1 and R2 on X is the
L-relation R1 ∪ R2 on X defined by R1 ∪ R2(x, y) = R1(x, y) ∨ R2(x, y), for any
x, y ∈ X. The transpose Rt of R is defined by Rt(x, y) = R(y, x).

An L-relation R on X is called an L-tolerance relation if it is reflexive and
symmetric. A ∗-transitive L-tolerance relation is called an L-equivalence relation
and a separable L-equivalence relation is called an L-equality relation. Note that
the only {0, 1}-equality relation on X is the smallest equivalence relation on X
denoted by δ, i.e., δ = {(x, y) ∈ X2 | x = y}.

2.4. The Clone Relation of a Relation. In this subsection, we recall the notion
of clone relation of a relation introduced by Bouremel et al. [7]. Two elements of a
set equipped with a relation R are said to be a pair of clones if they are related in
the same way w.r.t. every other element. More formally, the clone relation ≈R of
a relation R on a set X is the relation ≈R on X defined by

x ≈R y if

 (∀z ∈ X \ {x, y})(zRx⇔ zRy)
and

(∀z ∈ X \ {x, y})(xRz ⇔ yRz) .
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Note that the clone relation ≈R of a relation R on a set X is a tolerance relation
on X. The clone relation ≈R of a relation R can be partitioned as follows:

≈R = /R ∪ .R ∪ ◦R ∪ �R ∪ δ ,
where the relations /R, .R, �R and ◦R are given as:

/R = {(x, y) ∈ X2 | x ≈R y ∧ xRy ∧ yRcx ∧ x 6= y} ,
.R = {(x, y) ∈ X2 | x ≈R y ∧ xRcy ∧ yRx ∧ x 6= y} ,
◦R = {(x, y) ∈ X2 | x ≈R y ∧ xRy ∧ yRx ∧ x 6= y} ,
�R = {(x, y) ∈ X2 | x ≈R y ∧ x ‖R y ∧ x 6= y} .

Note that, on the one hand, /R and .R are irreflexive, antisymmetric and antitran-
sitive and it holds that /R = .tR. On the other hand, ◦R and �R are irreflexive,
symmetric and transitive. Informally, ◦R consists of ‘related clones’, while �R con-
sists of ‘unrelated clones’.

An important special case is the clone relation of a strict order relation, which
was introduced by De Baets et al. [11] and used for characterizing the L-tolerance
and L-equivalence relations that a strict order relation is compatible with. For
more details, we refer to [11, 16].

3. Two Auxiliary Relations

In this section, we study a subrelation of ◦R and a subrelation of �R, associated
with the clone relation ≈R of a given relation R. These subrelations will turn out
to be useful technical tools in the following sections.

Definition 3.1. Let R be a relation on a set X and ≈R be the clone relation of R
with corresponding ◦R and �R. The following relations on X are defined:

(i) ◦rR = {(x, y) ∈ ◦R | xRx ∧ yRy}.
(ii) �iR = {(x, y) ∈ �R | xRcx ∧ yRcy}.

Obviously, ◦rR is a subrelation of ◦R and �iR is a subrelation of �R. Informally,
◦rR consists of ‘reflexive related clones’, while �iR consists of ‘irreflexive unrelated
clones’.

Remark 3.2. Definition 3.1 implies that, for a given relation R on a set X, the
following two cases are impossible: (x◦rR y and y�iR z), as well as (x�iR y and y◦rR z).

Proposition 3.3. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR. Then the following statements hold:

(i) If R is reflexive, then ◦rR = ◦R and �iR = ∅.
(ii) If R is irreflexive, then �iR = �R and ◦rR = ∅.

Since ◦R and �R are irreflexive and symmetric, the following proposition is im-
mediate.

Proposition 3.4. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR. Then the following statements hold:

(i) The relation ◦rR is irreflexive and symmetric.
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(ii) The relation �iR is irreflexive and symmetric.
(iii) The relation ◦rR ∪ �iR is irreflexive and symmetric.

Corollary 3.5. Let R be a relation on a set X and ≈R be the clone relation of R
with corresponding ◦rR and �iR. Then the following statements hold:

(i) The relation ◦rR ∪ δ is a tolerance relation.
(ii) The relation �iR ∪ δ is a tolerance relation.
(iii) The relation ◦rR ∪ �iR ∪ δ is a tolerance relation.

The following proposition shows the relation between the subrelations associated
with the clone relation ≈R and the subrelations associated with the clone relations
≈Rc ,≈Rt and ≈Rd . To that end, we need the following lemma.

Lemma 3.6. Let R be a relation on a set X. Then the following statements hold:

(i) ≈Rc=≈R.
(ii) ≈Rt=≈R.
(iii) ≈Rd=≈R.

Proof. (i) For any x, y ∈ X, it holds that

x ≈Rc y ⇔


(∀z ∈ X \ {x, y})(zRcx⇔ zRcy)

and

(∀z ∈ X \ {x, y})(xRcz ⇔ yRcz)

⇔


(∀z ∈ X \ {x, y})(zRx⇔ zRy)

and

(∀z ∈ X \ {x, y})(xRz ⇔ yRz)

⇔ x ≈R y.

(ii) Is proved analogously to (i).
(iii) Follows immediately from (i) and (ii).

�

Proposition 3.7. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR. Then the following statements hold:

(i) (◦rRc , �iRc) = (�iR, ◦rR).
(ii) (◦rRt , �iRt) = (◦rR, �iR).

(iii) (◦rRd , �iRd) = (�iR, ◦rR).

Proof. (i) We need to prove that ◦rRc = �iR and �iRc = ◦rR.
(a) By definition, ◦rRc = {(x, y) ∈ X2 | (x◦Rc y)∧ (xRcx)∧ (yRcy)}. Since
◦Rc = {(x, y) ∈ X2 | x ≈Rc y ∧ xRcy ∧ yRcx} and ≈Rc=≈R (see
Lemma 3.6), it follows that ◦rRc = �iR.

(b) By definition, �iRc = {(x, y) ∈ X2 | (x �Rc y) ∧ (xRx) ∧ (yRy)}. Since
�Rc = {(x, y) ∈ X2 | (x ≈Rc y) ∧ (xRy) ∧ (yRx)} and ≈Rc=≈R , it
follows that �iRc = ◦rR.

(ii) Is proved analogously to (i).
(iii) Follows immediately from (i) and (ii).

�
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The following proposition identifies two important implications, which will be
helpful in the proofs in Section 5.

Proposition 3.8. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR. Then the following statements hold:

(i) If x ◦rR y, then, for any z ∈ X \ {x, y}, x ≈R z and zRz imply that x ◦rR z
and y ◦rR z.

(ii) If x �iR y, then, for any z ∈ X \ {x, y}, x ≈R z and zRcz imply that x �iR z
and y �iR z.

Proof. (i) Let x, y ∈ X and z ∈ X \ {x, y} be such that x ◦rR y, x ≈R z and
zRz. Note that x 6= y. On the one hand, since xRy, yRx, x ≈R z, and
y ∈ X \{x, z}, it follows that zRy and yRz. On the other hand, since zRy,
yRz, x ≈R y and z ∈ X \ {x, y}, it follows that zRx and xRz. As x ≈R z,
xRx and zRz, it follows that x ◦rR z.

Next, we prove that y ◦rR z. As yRy and zRz, it remains to prove that
y ≈R z. Suppose that y 6≈R z, then there exists t ∈ X \ {y, z} such
that (yRt and zRct) or (zRt and yRct) or (tRy and tRcz) or (tRz and
tRcy). Suppose, for instance, that (yRt and zRct). Since zRx, it follows
that t ∈ X \ {x, y, z}. It then holds that x ≈R y and x ≈R z imply that
(xRt and xRct), a contradiction. The three other cases lead to a similar
contradiction. Hence, y ≈R z, and, therefore, y ◦rR z.

(ii) Let x, y ∈ X and z ∈ X \ {x, y} be such that x �iR y and x ≈R z. Note that
x 6= y. On the one hand, since x ‖R y, x ≈R z and y ∈ X \{x, z}, it follows
that z ‖R y. On the other hand, since z ‖R y, x ≈R y and z ∈ X \ {x, y},
it follows that z ‖R x. As x ≈R z, xRcx and zRcz, it follows that x �iR z.

Next, we prove that y �iR z. As y ‖R z, yRcy and zRcz, it remains to
prove that y ≈R z. Suppose that y 6≈R z, then it follows that there exists
t ∈ X \ {y, z} such that (yRt and zRct) or (zRt and yRct) or (tRy and
tRcz) or (tRz and tRcy). Suppose, for instance, that(yRt and zRct). Since
yRct, it follows that t ∈ X \{x, y, z}. It then holds that x ≈R y and x ≈R z
imply that (xRt and xRct), a contradiction. The three other cases lead to
a similar contradiction. Hence, y ≈R z, and, therefore, y �iR z. �

The following proposition discusses the transitivity of the relations ◦rR∪δ, �iR∪δ
and ◦rR ∪ �iR ∪ δ.
Proposition 3.9. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR. Then the following statements hold:

(i) The relation ◦rR ∪ δ is transitive.
(ii) The relation �iR ∪ δ is transitive.

(iii) The relation ◦rR ∪ �iR ∪ δ is transitive.

Proof. (i) Let x, y, z ∈ X be such that x(◦rR ∪ δ)y and y(◦rR ∪ δ)z.
(a) If x = z or x = y or y = z, then it trivially holds that x(◦rR ∪ δ)z.
(b) If x 6= z, x 6= y and y 6= z, then it holds that (x ◦rR y) and (y ◦rR z).

Since ◦R is transitive, it holds that x◦R z. As xRx and zRz, it follows
that x ◦rR z. Hence, x(◦rR ∪ δ)z.
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We conclude that ◦rR ∪ δ is transitive.
(ii) Let x, y, z ∈ X be such that x(�iR ∪ δ)y and y(�iR ∪ δ)z.

(a) If x = z or x = y or y = z, then it trivially holds that x(�iR ∪ δ)z.
(b) If x 6= z, x 6= y and y 6= z, then it holds that (x �iR y) and (y �iR z).

Since �R is transitive, it holds that x �R z. As xRcx and zRcz, it
follows that x �iR z. Hence, x(�iR ∪ δ)z.

We conclude that �iR ∪ δ is transitive.
(iii) Let x, y, z ∈ X be such that x(◦rR ∪ �iR ∪ δ)y and y(◦rR ∪ �iR ∪ δ)z.

(a) If x = z or x = y or y = z, then it trivially holds that x(◦rR ∪�iR ∪ δ)z.
(b) If x 6= z, x 6= y and y 6= z, then since (x◦rRy∧y�iRz) and (x�iRy∧y◦rRz)

are two impossible cases, it follows that (x(◦rR ∪ δ)y ∧ y(◦rR ∪ δ)z) or
(x(�iR ∪ δ)y ∧ y(�iR ∪ δ)z). From (i) and (ii), it follows that x(◦rR ∪ δ)z
or x(�iR ∪ δ)z. Hence, it holds that x(◦rR ∪ �iR ∪ δ)z.

We conclude that ◦rR ∪ �iR ∪ δ is transitive. �

From Corollary 3.5 and Proposition 3.9, the following result follows.

Corollary 3.10. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR. Then it holds that ◦rR ∪ δ, �iR ∪ δ and ◦rR ∪�iR ∪ δ
are equivalence relations.

4. Compatibility of a Relation with the Two Auxiliary Relations
Associated with Its Clone Relation

In this section, we study the compatibility of a relation with the two subrelations
◦rR and �iR associated with its clone relation.

4.1. Compatibility of Fuzzy Relations. In this subsection, we recall some basic
definitions and results on compatibility, right compatibility and left compatibility
of two L-relations on a universe X. Further information can be found in [11, 16].
We pay particular attention to the case where the first L-relation considered is a
crisp relation, in particular a pseudo-order relation.

Definition 4.1. [16] Let R1 and R2 be two L-relations on a universe X.

(i) R1 is called left compatible with R2, denoted R1OlR2, if it holds that
R1(x, y) ∗R2(x, z) 6 R1(z, y), for any x, y, z ∈ X.

(ii) R1 is called right compatible with R2, denoted R1Or R2, if it holds that
R1(x, y) ∗R2(y, t) 6 R1(x, t), for any x, y, t ∈ X.

(iii) R1 is called compatible with R2, denoted R1OR2, if it holds that
R1(x, y) ∗R2(x, z) ∗R2(y, t) 6 R1(z, t), for any x, y, z, t ∈ X.

Lemma 4.2. [16] Let R1 and R2 be two L-relations on a universe X. Then it
holds that

(i) If R1OlR2 and R1Or R2, then R1OR2.
(ii) If R1OR2 and R2 is reflexive, then R1OlR2 and R1Or R2.

Lemma 4.3. [16] Let R be an L-relation on a universe X and (Si)i∈I be a family
of L-relations on X. Then it holds that
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(i) ROr Si, for any i ∈ I, if and only if ROr

(
∪
i∈I
Si

)
.

(ii) ROl Si, for any i ∈ I, if and only if ROl

(
∪
i∈I
Si

)
.

Let R be a relation on a set X and E be an L-relation on X, then compatibility
of R with E states that

τ(xRy) ∗ E(x, z) ∗ E(y, t) ≤ τ(zRt) , (1)

for any x, y, z, t ∈ X. Note that throughout this paper, we use the notation τ to
refer to the characteristic mapping of a relation R on a set X, i.e., τ(xRy) = 1 if
xRy, while τ(xRy) = 0 if xRcy.

The following theorem shows that the crisp equality is the only reflexive L-
relation that a pseudo-order relation is compatible with.

Theorem 4.4. A pseudo-order relation R on a set X is compatible with a reflexive
L-relation on X if and only if E is the crisp equality on X.

Proof. Suppose that R is compatible with E. It follows that

τ(xRx) ∗ E(x, x) ∗ E(x, y) ≤ τ(xRy) ,

for any x, y ∈ X. Since R and E are reflexive, it follows that E(x, y) ≤ τ(xRy),
for any x, y ∈ X. Similarly, it holds that E(x, y) ≤ τ(yRx), for any x, y ∈ X.
Hence, E(x, y) ≤ min(τ(xRy), τ(yRx)), for any x, y ∈ X. On the one hand, since
R is antisymmetric, it follows that E(x, y) = 0, for any x, y ∈ X such that x 6= y.
On the other hand, since E is reflexive, it holds that E(x, x) = 1, for any x ∈ X.
Therefore, E is the crisp equality on X.

Conversely, it is obvious that R is compatible with the crisp equality. �

The above theorem implies the following corollary shown earlier in [16].

Corollary 4.5. An order relation R on a set X is compatible with an L-tolerance
or L-equivalence relation E if and only if E is the crisp equality on X.

4.2. Compatibility of a Relation R with the Relations ◦rR and �iR. In this
subsection, we prove some key results, which will be helpful in the proofs of our
main theorems in Section 5.

Proposition 4.6. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR. Then the following statements hold:

(i) R is compatible with ◦rR.
(ii) R is compatible with �iR.

Proof. (i) In view of Lemma 4.2, it suffices to prove that ROl◦rR and ROr◦rR.
(a) Let x, y, z ∈ X, then we need to prove that

τ(xRy) ∗ τ(x ◦rR z) ≤ τ(zRy) .

(1) If xRcy or x(◦rR)cz, then τ(xRy)∗τ(x◦rRz) = 0 and the inequality
is trivially fulfilled.
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(2) If xRy and x ◦rR z, then we distinguish three cases: x 6= y 6= z,
x = y and y = z:
(α) If x 6= y 6= z, then since xRy and x ≈R z, it follows that

zRy. Hence, it holds that τ(xRy)∗τ(x◦rR z) ≤ τ(zRy) = 1.
(β) If x = y, then, by definition of ◦rR, it follows that τ(x◦rRz) ≤

τ(zRx). Hence, it holds that τ(xRx) ∗ τ(x ◦rR z) ≤ τ(zRx).
(γ) If y = z, then, by definition of ◦rR, it follows that τ(x◦rRy) ≤

τ(yRy). Hence, it holds that τ(xRy) ∗ τ(x ◦rR y) ≤ τ(yRy).
We conclude that ROl ◦rR.

(b) Let x, y, t ∈ X, then we need to prove that

τ(xRy) ∗ τ(y ◦rR t) ≤ τ(xRt) .

(1) If xRcy or y(◦rR)c t, then τ(xRy)∗τ(y◦rRt) = 0 and the inequality
is trivially fulfilled.

(2) If xRy and y ◦rR t, then we distinguish the following cases:
(α) If y 6= x 6= t, then since xRy and y ≈R t, it follows that

xRt. Hence, it holds that τ(xRy) ∗ τ(y ◦rR t) ≤ τ(xRt) = 1.
(β) If x = y, then, by definition of ◦rR, it follows that τ(x◦rRt) ≤

τ(xRt). Hence, it holds that τ(xRx) ∗ τ(x ◦rR t) ≤ τ(xRt).
(γ) If x = t, then, by definition of ◦rR, it follows that τ(y◦rRx) ≤

τ(xRx). Hence, it holds that τ(xRy) ∗ τ(y ◦rR x) ≤ τ(xRx).
We conclude that ROl ◦rR.

(ii) Can be proved analogously.
�

Combining Proposition 4.6, Lemma 4.3 and the fact that R is compatible with
δ, we obtain the following corollary.

Corollary 4.7. Let R be a relation on a set X and ≈R be the clone relation of R
with corresponding ◦rR and �iR. Then it holds that R is compatible with (◦rR∪�iR∪δ).

From Propositions 3.3 and 4.6, we obtain the following corollary.

Corollary 4.8. Let R be a relation on a set X and ≈R be the clone relation of R
with corresponding ◦rR and �iR. Then the following statements hold:

(i) If R is reflexive, then R is compatible with ◦R ∪ δ.
(ii) If R is irreflexive, then R is compatible with �R ∪ δ.

5. Compatibility of a Relation with an L-tolerance or
L-equivalence Relation

In this section, we study the compatibility of an arbitrary relation with an L-
tolerance or L-equivalence relation.

5.1. Compatibility of a Relation with an L-tolerance Relation. In this sub-
section, we characterize the L-tolerance relations that a given relation is compatible
with.
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Theorem 5.1. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR and E be an L-tolerance relation on X. Then it
holds that R is compatible with E if and only if E ⊆ ◦rR ∪ �iR ∪ δ.

Proof. Suppose thatR is compatible with E, i.e., τ(xRy)∗E(x, z)∗E(y, t) ≤ τ(zRt),
for any x, y, z, t ∈ X. Let a, b ∈ X. If a = b or E(a, b) = 0, then it trivially holds
that E(a, b) ≤ τ(a(◦rR ∪ �iR ∪ δ)b). If a 6= b and E(a, b) > 0, then we need to
prove that τ(a(◦rR ∪ �iR)b) = 1, i.e., it holds that (aRb ∧ bRa ∧ aRa ∧ bRb) or
(a ‖ b ∧ aRca ∧ bRcb), as well as a ≈R b.

(i) First, we prove that (aRb ∧ bRa ∧ aRa ∧ bRb) or (a ‖ b ∧ aRca ∧ bRcb).
On the one hand, since E is symmetric and R is compatible with E, it
follows that

τ(aRb) ∗ E(a, b)︸ ︷︷ ︸
>0

∗E(b, a)︸ ︷︷ ︸
>0

≤ τ(bRa) .

This implies that τ(aRb) ≤ τ(bRa). On the other hand, it follows that

τ(bRa) ∗ E(b, a)︸ ︷︷ ︸
>0

∗E(a, b)︸ ︷︷ ︸
>0

≤ τ(aRb) ,

whence also τ(bRa) ≤ τ(aRb). Therefore, τ(aRb) = τ(bRa), i.e., (aRb ∧
bRa) or a ‖ b.
(a) If (aRb ∧ bRa), then we need to prove that (aRa ∧ bRb).

On the one hand, since E is reflexive and R is compatible with E, it
follows that

τ(aRb)︸ ︷︷ ︸
=1

∗E(a, a)︸ ︷︷ ︸
=1

∗E(b, a)︸ ︷︷ ︸
>0

≤ τ(aRa) .

This implies that τ(aRa) = 1, i.e., aRa. On the other hand, it follows
that

τ(bRa)︸ ︷︷ ︸
=1

∗E(b, b)︸ ︷︷ ︸
=1

∗E(a, b)︸ ︷︷ ︸
>0

≤ τ(bRb) ,

whence also bRb.
(b) If a ‖ b, then, in an analogous way, we can prove that (aRca ∧ bRcb).

We conclude that (aRb ∧ bRa ∧ aRa ∧ bRb) or (a ‖ b ∧ aRca ∧ bRcb).
(ii) Second, it remains to prove that a ≈R b. Let c ∈ X \{a, b}. We distinguish

four subcases.
(a) If aRc, then since E is reflexive and R is compatible with E, it follows

that

0 < E(a, b) = τ(aRc)︸ ︷︷ ︸
=1

∗E(a, b)︸ ︷︷ ︸
>0

∗E(c, c)︸ ︷︷ ︸
=1

≤ τ(bRc) .

This implies that τ(bRc) > 0, whence bRc.
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(b) If bRc, then since E is reflexive, symmetric and R is compatible with E,
it follows that

0 < E(a, b) = τ(bRc)︸ ︷︷ ︸
=1

∗ E(b, a)︸ ︷︷ ︸
=E(a,b)>0

∗E(c, c)︸ ︷︷ ︸
=1

≤ τ(aRc) .

This implies that τ(aRc) > 0, whence aRc.
(c) If cRa, then since E is reflexive and R is compatible with E, it follows

that

0 < E(a, b) = τ(cRa)︸ ︷︷ ︸
=1

∗E(c, c)︸ ︷︷ ︸
=1

∗E(a, b)︸ ︷︷ ︸
>0

≤ τ(cRb) .

This implies that τ(cRb) > 0, whence cRb.
(d) If cRb, then since E is reflexive, symmetric and R is compatible with

E, it follows that

0 < E(a, b) = τ(cRb)︸ ︷︷ ︸
=1

∗E(c, c)︸ ︷︷ ︸
=1

∗ E(b, a)︸ ︷︷ ︸
=E(a,b)>0

≤ τ(cRa) .

This implies that τ(cRa) > 0, whence cRa.
We conclude that a ≈R b.

Finally, we conclude that E ⊆ ◦rR ∪ �iR ∪ δ.
Conversely, if E ⊆ ◦rR ∪ �iR ∪ δ, then due to the monotonicity of ∗, it holds that

τ(xRy) ∗ E(x, z) ∗ E(y, t) ≤ τ(xRy) ∗ τ(x(◦rR ∪ �iR ∪ δ)z) ∗ τ(y(◦rR ∪ �iR ∪ δ)t) ,

for any x, y, z, t ∈ X. From Corollary 4.7, it follows that

τ(xRy) ∗ E(x, z) ∗ E(y, t) ≤ τ(zRt) ,

for any x, y, z, t ∈ X. Hence, R is compatible with E. �

From Corollary 3.5 and Theorem 5.1, the following result is straightforward.

Corollary 5.2. Let R be a relation on a set X and ≈R be the clone relation of
R with corresponding ◦rR and �iR. Then it holds that ◦rR ∪ �iR ∪ δ is the greatest
L-tolerance relation on X that R is compatible with.

Proposition 3.3 and Theorem 5.1 lead to the following corollary.

Corollary 5.3. Let R be a relation on a set X, ≈R be the clone relation of R
with corresponding ◦rR and �iR and E be an L-tolerance relation on X. Then the
following statements hold:

(i) If R is reflexive, then R is compatible with E if and only if E ⊆ ◦R ∪ δ.
(ii) If R is irreflexive, then R is compatible with E if and only if E ⊆ �R ∪ δ.

Combining Proposition 3.7 and Theorem 5.1, we obtain the following corollary.

Corollary 5.4. Let R be a relation on a set X, ≈R be the clone relation of R with
corresponding ◦rR and �iR and E be an L-tolerance relation on X. If R is compatible
with E, then it holds that the relations Rt, Rc and Rd are compatible with E.
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The following lemma will be useful in the proof of our representation theorem,
i.e., the representation of the L-tolerance relations a given relation is compatible
with. Its proof is straightforward.

Lemma 5.5. Let R be a relation on a set X and ≈R be the clone relation of R
with corresponding ◦rR and �iR. Let α and β be two L-tolerance relations on X such
that α ⊆ ◦rR ∪ δ and β ⊆ �iR ∪ δ, then the union E = α ∪ β is the L-tolerance
relation on X given by

E(x, y) =


1 , if x = y ,

α(x, y) , if x ◦rR y ,
β(x, y) , if x �iR y ,
0 , otherwise .

Theorem 5.6. Let R be a relation on a set X, ≈R be the clone relation of R with
corresponding ◦rR and �iR and E be an L-tolerance relation on X. Then it holds
that R is compatible with E if and only if there exist two L-tolerance relations α
and β on X with α ⊆ ◦rR ∪ δ and β ⊆ �iR ∪ δ such that E = α ∪ β.

Proof. Suppose that R is compatible with E. Consider the L-relations α and β on
X defined by

α(x, y) =

{
E(x, y) , if (x, y) ∈ ◦rR ∪ δ ,
0 , otherwise ,

β(x, y) =

{
E(x, y) , if (x, y) ∈ �iR ∪ δ ,
0 , otherwise .

Note that if (x, y) ∈ ◦rR ∪ δ, then it also holds that (y, x) ∈ ◦rR ∪ δ. Similarly,
if (x, y) ∈ �iR ∪ δ, then also (y, x) ∈ �iR ∪ δ. Hence, α and β are L-tolerance
relations on X. Since R is compatible with E, it follows from Theorem 5.1 that
E ⊆ ◦rR ∪ �iR ∪ δ, whence E(x, y) = 0 if x(◦rR ∪ �iR ∪ δ)c y. Hence, it follows that
E = α ∪ β.

Conversely, let α ⊆ ◦rR ∪ δ and β ⊆ �iR ∪ δ be two L-tolerance relations
on X. Lemma 5.5 implies that E = α ∪ β is an L-tolerance relation on X.
Since E ⊆ ◦rR ∪ �iR ∪ δ, Theorem 5.1 guarantees that R is compatible with E. �

As a corollary, we obtain the following representation of the crisp tolerance
relations a given relation is compatible with.

Corollary 5.7. Let R be a relation on a set X, ≈R be the clone relation of R with
corresponding ◦rR and �iR and E be a tolerance relation on X. Then it holds that R
is compatible with E if and only there exist two L-tolerance relations α and β on
X with α ⊆ ◦rR ∪ δ and β ⊆ �iR ∪ δ such that E = α ∪ β.

Remark 5.8. In the setting of Corollary 5.7, we have:

(i) If α = δ and β = δ, then E = δ.
(ii) If α = ◦rR ∪ δ and β = �iR ∪ δ, then E = ◦rR ∪ �iR ∪ δ.
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Combining Proposition 3.3 and Theorem 5.6, we obtain the following corollaries.

Corollary 5.9. Let R be a reflexive relation on a set X, ≈R be the clone relation
of R with corresponding ◦rR and E be an L-tolerance relation on X. Then it holds
that R is compatible with E if and only if there exists an L-tolerance relation α
on X with α ⊆ ◦R ∪ δ such that

E(x, y) =

{
α(x, y) , if (x, y) ∈ ◦R ∪ δ ,
0 , otherwise .

Corollary 5.10. Let R be an irreflexive relation on a set X, ≈R be the clone
relation of R with corresponding �iR and E be an L-tolerance relation on X. Then
it holds that R is compatible with E if and only if there exists an L-tolerance relation
β on X with β ⊆ �R ∪ δ such that

E(x, y) =

{
β(x, y) , if (x, y) ∈ �R ∪ δ ,
0 , otherwise .

5.2. Compatibility of a Relation with an L-equivalence Relation. In this
subsection, we characterize the L-equivalence relations a given relation is compati-
ble with.

Proposition 5.11. Let R be a relation on a set X and ≈R be the clone relation
of R with corresponding ◦rR and �iR. Let α and β two L-equivalence relations on X
such that α ⊆ ◦rR ∪δ and β ⊆ �iR ∪δ, then the union E = α∪β is an L-equivalence
relation on X.

Proof. Due to Lemma 5.5, E is an L-tolerance relation. It remains to show that E
is ∗-transitive. Let x, y, z ∈ X, then we need to show that

E(x, y) ∗ E(y, z) ≤ E(x, z) .

Let x, y, x ∈ X such that E(x, y) > 0 and E(y, z) > 0. We consider the following
cases.

(i) If x = y or y = z or x = z, then the inequality E(x, y) ∗ E(y, z) ≤ E(x, z)
trivially holds.

(ii) Suppose that x 6= y, y 6= z and x 6= z. Since E ⊆ ◦rR ∪ �iR, it follows that
(x ◦rR y ∧ y ◦rR z) or (x ◦rR y ∧ y �iR z) or (x �iR y ∧ y ◦rR z) or (x �iR y ∧ �iRz).
(a) From the definition of ◦rR and �iR, it follows that the cases (x◦rRy∧y�iRz)

and (x �iR y ∧ y ◦rR z) are impossible. Otherwise, it would follow that
(yRy ∧ yRcy), a contradiction.

(b) If (x ◦rR y ∧ y ◦rR z), then it follows that x ◦rR y, y ≈R z, zRz and
z ∈ X \ {x, y}. From Proposition 3.8, it follows that x ◦rR z. Hence,
E(x, y) = α(x, y), E(y, z) = α(y, z) and E(x, z) = α(x, z). Since α
is ∗-transitive, it holds that α(x, y) ∗ α(y, z) ≤ α(x, z), i.e., E(x, y) ∗
E(y, z) ≤ E(x, z).
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(c) If (x �iR y ∧ y �iR z), then it follows that x �iR y, y ≈R z, zRcz and
z ∈ X \ {x, y}. From Proposition 3.8, it follows that x �iR z. Hence,
E(x, y) = β(x, y), E(y, z) = β(y, z) and E(x, z) = β(x, z). Since β
is ∗-transitive, it holds that β(x, y) ∗ β(y, z) ≤ β(x, z), i.e., E(x, y) ∗
E(y, z) ≤ E(x, z).

We conclude that E = α ∪ β is an L-equivalence relation on X. �

Combining Theorem 5.6 and Proposition 5.11 easily leads to the following theo-
rem.

Theorem 5.12. Let R be a relation on a set X, ≈R be the clone relation of R with
corresponding ◦rR and �iR and E be an L-equivalence relation on X. Then it holds
that R is compatible with E if and only if there exist two L-equivalence relations α
and β on X with α ⊆ ◦rR ∪ δ and β ⊆ �iR ∪ δ such that E = α ∪ β.

Proof. Theorem 5.6 states that R is compatible with E if and only if there exist
two L-tolerance relations α and β on X with α ⊆ ◦rR ∪ δ and β ⊆ �iR ∪ δ such that
E = α ∪ β, where

α(x, y) =

{
E(x, y) , if (x, y) ∈ ◦rR ∪ δ ,
0 , otherwise ,

β(x, y) =

{
E(x, y) , if (x, y) ∈ �iR ∪ δ ,
0 , otherwise .

Let x, y, z ∈ X, then we need to show that

α(x, y) ∗ α(y, z) ≤ α(x, z)

and

β(x, y) ∗ β(y, z) ≤ β(x, z) .

(i) First, we prove that α(x, y) ∗ α(y, z) ≤ α(x, z).
(a) If x = y or y = z or x = z, then this inequality trivially holds.
(b) Suppose that x 6= y, y 6= z and x 6= z.

(1) If x(◦rR)cy or y(◦rR)cz, then it follows that α(x, y) = 0 or α(y, z) =
0. Hence, it holds that α(x, y) ∗ α(y, z) ≤ α(x, z).

(2) If x ◦rR y and y ◦rR z, then it follows that x ◦rR y, y ≈R z, zRz
and z ∈ X \ {x, y}. From Proposition 3.8, it follows that x ◦rR z.
As x ◦rR y, y ◦rR z and x ◦rR z, it follows that α(x, y) = E(x, y),
α(y, z) = E(y, z) and α(x, z) = E(x, z). Since E is ∗-transitive,
it holds that α(x, y) ∗ α(y, z) ≤ α(x, z).

Thus, α is ∗-transitive.
(ii) Second, we prove that β(x, y) ∗ β(y, z) ≤ β(x, z).

(a) If x = y or y = z or x = z, then this inequality trivially holds.
(b) Suppose that x 6= y, y 6= z and x 6= z.

(1) If x(�iR)cy or y(�iR)cz, then it follows that β(x, y) = 0 or β(y, z) =
0. Hence, it holds that β(x, y) ∗ β(y, z) ≤ β(x, z).
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(2) If x �iR y and y �iR z, then it follows that x �rR y, y ≈ z, zRcz
and z ∈ X \ {x, y}. From Proposition 3.8, it follows that x �iR z.
As x �iR y, y �iR z and x �iR z, it follows that β(x, y) = E(x, y),
β(y, z) = E(y, z) and β(x, z) = E(x, z). Since E is ∗-transitive,
it holds that β(x, y) ∗ β(y, z) ≤ β(x, z).

Thus, β is ∗-transitive.
We conclude that α and β are L-equivalence relations on X.

For the converse, Proposition 5.11 guarantees that E = α ∪ β is an L-equivalence
relation on X. �

As a corollary, we obtain the following representation of the L-equality or equiv-
alence relations a relation is compatible with.

Corollary 5.13. Let R be a relation on a set X, ≈R be the clone relation of R
with corresponding ◦rR and �iR and E be an L-equality relation on X. Then it holds
that R is compatible with E if and only if there exist two L-equality relations α and
β on X with α ⊆ ◦rR ∪ δ and β ⊆ �iR ∪ δ such that E = α ∪ β.

Corollary 5.14. Let R be a relation on a set X, ≈R be the clone relation of R with
corresponding ◦rR and �iR and E be an equivalence relation on X. Then it holds
that R is compatible with E if and only if there exist two equivalence relations α
and β on X with α ⊆ ◦rR ∪ δ and β ⊆ �iR ∪ δ such that E = α ∪ β.

From Proposition 3.3 and Theorem 5.12, we obtain the following representation
of the L-equivalence relations that a reflexive or irreflexive relation is compatible
with.

Corollary 5.15. Let R be a reflexive relation on a set X, ≈R be the clone relation
of R with corresponding ◦rR and E be an L-equivalence relation on X. Then it holds
that R is compatible with E if and only if there exists an L-equivalence relation α
on X with α ⊆ ◦R ∪ δ such that

E(x, y) =

{
α(x, y) , if (x, y) ∈ ◦R ∪ δ ,
0 , otherwise .

Corollary 5.16. Let R be an irreflexive relation on a set X, ≈R be the clone
relation of R with corresponding �iR and E be an L-equivalence relation on X.
Then it holds that R is compatible with E if and only if there exists an L-equivalence
relation β on X with β ⊆ �R ∪ δ such that

E(x, y) =

{
β(x, y) , if (x, y) ∈ �R ∪ δ ,
0 , otherwise .

6. Conclusion

In this work, we have tackled and solved the general problem of characterizing
the L-tolerance and L-equivalence relations a given relation is compatible with. To
that end, we have expanded our knowledge on the clone relation of a relation by
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studying two important subrelations of the partition of this clone relation, infor-
mally described as reflexive related clones and irreflexive unrelated clones.

Future work will be directed towards the characterization of the L-tolerance and
L-equivalence relations a given L-relation is compatible with. This requires a lot
of preparatory work, in particular the proper generalization of the notion of clone
relation from crisp relations to L-relations.
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