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a b s t r a c t 

In a recent paper, De Baets et al. introduced the clone relation of a strict order relation. 

Two elements of a poset are said to be a pair of clones (or to be clones) if every other 

element that is greater (resp. smaller) than one of them is also greater (resp. smaller) 

than the other one. This clone relation played a key role in the characterization of the L - 

fuzzy tolerance relations and the L -fuzzy equivalence relations that a strict order relation 

is compatible with. In this paper, we extend the notion of clone relation to any binary 

relation. Although the definition of such extension is trivial, the corresponding properties 

significantly differ from those of the clone relation of a strict order relation. We analyse 

the most important ones among these properties, paying particular attention to a partition 

of the clone relation in terms of three different types of pairs of clones. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The clone relation of a strict order relation was recently introduced by De Baets et al. [5] . This notion is based on how

elements are related w.r.t. each other in a partially ordered set (poset, for short). Two elements of a poset are said to

form a pair of clones (or to be clones, for short) if every other element that is greater (resp. smaller) than one of them is

also greater (resp. smaller) than the other one. The clone relation of a strict order relation always is a tolerance relation

and it is built up by two different types of pairs of clones: pairs of comparable clones (which constitute an antitransitive

relation) and pairs of incomparable clones (which constitute a transitive relation). This partition of the clone relation played

a key role in the characterization of the L -fuzzy tolerance relations and the L -fuzzy equivalence relations that a strict order

relation is compatible with. Extending the definition of the clone relation of a strict order relation to an arbitrary binary

relation is a trivial task. Nevertheless, when doing so, its properties significantly vary from these of the clone relation of a

strict order relation. For instance, this extension leads to the distinction between two different types of pairs of comparable

clones: pairs of clones in which one element is related to the other and not the other way around (which constitute an

antitransitive relation) and pairs of clones in which both elements are related to each other (which constitute a transitive

relation). The main aim of the present paper is to extend the notion of clone relation of a strict order relation to an arbitrary

binary relation and to analyse the properties of such extension. This extension is a prerequisite to the characterization of

the L -fuzzy tolerance relations and the L -fuzzy equivalence relations that a given binary relation is compatible with. 
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When restricting to a total order relation, the clone relation coincides with the covering relation, i.e. two elements are

clones if and only if they are consecutive. This notion of consecutive elements in a totally ordered set was already indepen-

dently considered in the field of social choice theory by Tideman under the same name: clones. Clones are important in the

field of social choice theory since they can easily change the result of an election. Several methods have been proposed in

order to guarantee the independence of clones (see [12,13,15] ). 

Outside the field of social choice theory, the notions of left and right trace of a binary relation were introduced by

Doignon et al. [6] based on a concept similar to that of the clone relation. This notion played a key role in the characteriza-

tion of the basic properties of a fuzzy relation and of the compatibility of fuzzy relations (see [2,7,9] ). 

The rest of the paper is structured as follows. After recalling some basic definitions and properties in Section 2 , we

extend the notion of clone relation of a strict order relation to an arbitrary binary relation in Section 3 . In Section 4 , we

introduce the partition of the clone relation in terms of three different types of pairs of clones. In Section 5 , we characterize

the clone relation of the three different types of disjoint union. Finally, we present some conclusions and we discuss future

research in Section 6 . 

2. Basic concepts 

This section serves an introductory purpose. First, we recall some basic concepts and properties of a binary relation.

Second, the notion of clone relation of a strict order relation introduced by De Baets et al. [5] is briefly recalled. 

2.1. Binary relations 

A binary relation on a set X is a subset of X 

2 , i.e., it is a set of couples ( x , y ) ∈ X 

2 . For a relation R ⊆ X 

2 , we often

write xRy instead of ( x , y ) ∈ R . Two elements x and y of a set X equipped with a relation R are called comparable elements,

denoted by x � y , if it holds that xRy or yRx . Otherwise, they are called incomparable elements, denoted by x ‖ R y , or simply

x ‖ y when no confusion can occur. We denote by R c the complement of the relation R on X , i.e., for any x , y ∈ X , xR c y denotes

the fact that (x, y ) �∈ R . We denote by R t the transpose of the relation R on X , i.e., for any x , y ∈ X , xR t y denotes the fact that

yRx . We denote by R d the dual of the relation R on X , i.e., for any x , y ∈ X , xR d y denotes the fact that yR c x . A relation R on

a set X is said to be included in a relation S on the same set X , denoted by R ⊆ S , if, for any x , y ∈ X , xRy implies that xSy .

The union of two relations R and S on a set X is the relation R ∪ S on X defined as R ∪ S = { (x, y ) ∈ X 2 | xRy ∨ xSy } . Similarly,

the intersection of two relations R and S on a set X is the relation R ∩ S on X defined as R ∩ S = { (x, y ) ∈ X 2 | xRy ∧ xSy } . If

R ∩ S = ∅ , then R and S are called disjoint relations. The composition of two relations R and S on a set X is the relation R ◦S

on X defined as R ◦ S = { (x, z) ∈ X 2 | (∃ y ∈ X )(xRy ∧ ySz) } . 
A binary relation R on a set X is called: 

(i) reflexive, if, for any x ∈ X , it holds that xRx ; 

(ii) irreflexive, if, for any x ∈ X , it holds hat xR c x ; 

(iii) symmetric, if, for any x , y ∈ X , it holds that xRy implies that yRx ; 

(iv) antisymmetric, if, for any x , y ∈ X , it holds that xRy and yRx imply that x = y ; 

(v) asymmetric, if, for any x , y ∈ X , it holds that xRy implies that yR c x ; 

(vi) transitive, if, for any x , y , z ∈ X , it holds that xRy and yRz imply that xRz ; 

(vi) antitransitive, if, for any x , y , z ∈ X , it holds that xRy and yRz imply that xR c z ; 

(vii) complete, if, for any x , y ∈ X , either xRy or yRx holds. 

A binary relation R on a set X is called: 

(i) an order relation if it is reflexive, antisymmetric and transitive; 

(ii) a total order relation if it is reflexive, antisymmetric, transitive and complete; 

(iii) a tolerance relation if it is reflexive and symmetric; 

(iv) an equivalence relation if it is reflexive, symmetric and transitive. 

A set X equipped with an order relation ≤ is called a partially ordered set (poset, for short), denoted by ( X , ≤). 

For any tolerance/equivalence relation R on a set X , the tolerance/equivalence class of an element x ∈ X is given by

[ x ] R = { y ∈ X | xRy } . 
For more details on binary relations, we refer to [1,3,8,11] . 

2.2. The clone relation of a strict order relation 

In this subsection, we recall the notion of clone relation of a strict order relation introduced by De Baets et al. [5] . Two

elements of a poset are called clones (or are said to be a pair of clones) if they are related in the same way with every other

element in the poset. More formally, the clone relation ≈ of a strict order relation < is the binary relation on X defined by 

x ≈ y if 

{ 

(∀ z ∈ X \ { x, y } )(z < x ⇔ z < y ) 
and 

(∀ z ∈ X \ { x, y } )(x < z ⇔ y < z) . 
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Note that the clone relation ≈ of a strict order relation < is a tolerance relation on X . This clone relation can be partitioned 

1 

as follows: 

≈= � ∪ � ∪ � ∪ δ , 

where δ = { (x, y ) ∈ X 2 | x = y } and the binary relations � , � and � are pairwise disjoint relations given by: 

� = ≈ ∩ � , 

� = ≈ ∩ � , 

� = ≈ ∩ ‖ , 

where �= { (a, b) ∈ X 2 | (a < b) ∧ (� c ∈ X )(a < c < b) } and � = �t . 

Note that, on the one hand, � and � are irreflexive, antisymmetric and antitransitive and it holds that � = � t . On the other

hand, � is irreflexive, symmetric and transitive. Hence, the clone relation of a poset can be partitioned in terms of two types

of pairs of clones: pairs of comparable clones ( � ∪ � ) and pairs of incomparable clones ( �). 

3. The clone relation of a binary relation 

In this section, we extend the notion of clone relation to an arbitrary binary relation. The study of the basic properties

of this clone relation and its relation with set operations is also addressed. 

3.1. Definition 

The analysis of ‘likeness’ is a relevant matter of study in mathematics. Equivalence relations, which form a basic concept

in mathematics, define a natural notion of ‘likeness’ grouping elements in equivalence classes. When we drop transitivity and

allow an element to be ‘alike’ to two elements that are not ‘alike’ to each other, one does no longer talk about equivalence

relations but about tolerance relations. Another natural way of defining such ‘likeness’ is based on how elements are related

w.r.t. the other elements. In that way, two elements are said to be ‘alike’ (from now on clones) if they are related in the

same way w.r.t. every other element. 

Definition 1. Let R be a relation on a set X . The clone relation ≈R of R is the binary relation on X defined by 

x ≈R y if 

{ 

(∀ z ∈ X \ { x, y } )(zRx ⇔ zRy ) 
and 

(∀ z ∈ X \ { x, y } )(xRz ⇔ yRz) . 
(1) 

If x ≈R y , then we say that x and y are clones w.r.t. the relation R . 

Remark 1. Let R be a relation on a set X . Then the following statements hold: 

(i) For any x , y ∈ X , if x ≈R y , then it holds that 

(∀ z ∈ X \ { x, y } )(z ‖ x ⇔ z ‖ y ) . 

(ii) For any set X of two elements, it holds that ≈R = X 2 . 

(iii) For any set X , it holds that ≈X 2 = ≈∅ = X 2 . 

The matrix representation of a binary relation R can be used for illustrating the notion of clone relation and for facilitat-

ing the identification of clones in the finite case. Let R be a relation on a finite set X = { x 1 , x 2 , . . . , x n } (n ∈ N 

∗ = { 1 , 2 , 3 , . . . } ) .
For any x i , x j ∈ X with 1 ≤ i , j ≤ n , it holds that 2 

R i j = 

{
1 , if x i Rx j , 
0 , if x i R 

c x j . 

By definition, it holds that x i ≈R x j if, and only if, for any k �∈ { i , j }, it holds that R ik = R jk and R ki = R k j . This means that x i
and x j are clones if and only if the row and column corresponding to x i coincide with the row and column corresponding

to x j , with the exception of the four elements contained in the intersection of these two rows with these two columns. This

is illustrated in Fig. 1 . 

Example 1. Let R be the relation on X = { a, b, c, d, e, f } defined by the graph in Fig. 2 . 
1 Although the term ‘partition’ is used, any of the binary relations � , � and � might be empty. 
2 In this paper, a relation R is identified with its characteristic mapping χR , i.e. χR (x, y ) = 1 means xRy and χR (x, y ) = 0 means xR c y . In a finite setting, 

a relation can be conveniently represented as a matrix such that R i j = χR (x i , x j ) . 
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Fig. 1. Natural interpretation of the clone relation by means of the matrix representation of R . 

Fig. 2. Graph of a relation R on the set X = { a, b, c, d, e, f } . 

 

 

 

 

 

The matrix representation of the relation R is given by: 

R = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 1 0 0 

0 0 1 0 0 0 

0 1 1 0 0 0 

0 1 1 0 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Since the row and column corresponding to b coincide with the row and column corresponding to c (without taking the

four elements in the intersection of rows and columns into account), it holds that b ≈R c . In general, the clone relation of R

is given by: 

≈R = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 1 0 0 

0 1 1 0 0 0 

0 1 1 0 0 0 

1 0 0 1 0 0 

0 0 0 0 1 1 

0 0 0 0 1 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

For any relation R , the clone relation of R obviously is reflexive and symmetric. Therefore, the following result is straight-

forward. 

Proposition 1. Let R be a relation on a set X. The clone relation ≈R of R is a tolerance relation. 

In general, the clone relation ≈R does not need to be an equivalence relation, as can be seen in Example 2 . 

Example 2. Let X = { 1 , 2 , 3 } and < be the usual strict order relation. We can see that ≈< is not an equivalence relation. For

instance, it holds that 1 ≈< 2 and 2 ≈< 3, while 1 �≈< 3 . 

3.2. Basic properties 

In this subsection, we discuss the most relevant properties of the clone relation. First, it is trivial to prove that the clone

relation of a relation R always coincides with the clone relation of the complement, the transpose and the dual of R . 

Proposition 2. Let R be a relation on a set X. Then the following statements hold: 

(i) ≈R c = ≈R . 

(ii) ≈R t = ≈R . 

(iii) ≈R d = ≈R . 

Second, it can be proved easily that the reflexivity of R has no impact on the clone relation. 
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Fig. 3. Graphs of three relations R , R ′ and R ′ ′ on the set X = { a, b, c} . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 3. Let R and S be two relations on a set X. If for any x , y ∈ X such that x � = y it holds that xRy ⇔ xSy , then the clone

relation of R and the clone relation of S coincide, i.e. ≈R = ≈S . 

Note that, as a consequence of Proposition 3 , we conclude that the clone relation does not take reflexivity or irreflexivity

into account. Actually, the relation of an element with itself does not affect the clone relation. 

Corollary 1. Let R , R ′ and R ′ ′ be three relations on a set X. If R ′ = R ∪ { (x, x ) ∈ X 2 } and R ′′ = R \ { (x, x ) ∈ X 2 } , then it holds that

≈R = ≈R ′ = ≈R ′′ . 

This result is illustrated in the following example. 

Example 3. In Fig. 3 , the graphs of three relations R , R ′ and R ′ ′ on the set X = { a, b, c} such that R is neither reflexive nor

irreflexive, R ′ is reflexive and R ′ ′ is irreflexive are shown. Note that R , R ′ and R ′ ′ coincide for any two different elements.

Hence, it holds that 

≈R = ≈R ′ = ≈R ′′ = { (a, a ) , (b, b) , (c, c) , (a, b) , (b, a ) } . 
Remark 2. If ( X , ≤) is a poset and < is the strict order relation associated to the order relation ≤, then, from Corollary 1 , it

follows that ≈≤= ≈< . Note that De Baets et al. [5] defined the clone relation of a poset ( X , ≤) by means of the strict order

relation < but, in fact, if they had defined this clone relation by means of the order relation ≤, then the result would have

been the same. 

In the following proposition, we study when the clone relation ≈R is transitive, i.e. when it is an equivalence relation. 

Proposition 4. Let R be a relation on a set X. If there do not exist x , y ∈ X such that x ≈R y , xRy and yR c x , then it holds that ≈R

is an equivalence relation. 

Proof. Since ≈R is a tolerance relation (see Proposition 1 ), it suffices to prove that ≈R is transitive. Let x , y , z ∈ X be such

that x ≈R y and y ≈R z . Suppose that x �≈R z. It follows that there exists t ∈ X �{ x , z } such that ( tRx and tR c z ) or ( xRt and zR c t )

or ( tRz and tR c x ) or ( zRt and xR c t ). 

(i) Let us consider the case where tRx and tR c z . We distinguish two cases: t � = y and t = y . 

(a) If t � = y , then from x ≈R y and y ≈R z , it follows that tRy and tR c y , a contradiction. 

(b) If t = y, then it follows that yRx and yR c z . Since x ≈R y , y ≈R z and x �≈R z, it follows that x � = y � = z � = x . Moreover,

as y ≈R z , it follows that zRx and yR c z and, as x ≈R y , this implies that zRy and yR c z . At the same time it holds that

y ≈R z , a contradiction with the hypothesis. Therefore, ≈R is transitive. 

(ii) The other cases where ( xRt and zR c t ) or ( tRz and tR c x ) or ( zRt and xR c t ) are analogously proved. �

In particular, the conditions of Proposition 4 are satisfied for any symmetric relation. 

Corollary 2. Let R be a relation on a set X. If R is symmetric, then it holds that ≈R is an equivalence relation. 

Corollary 3. Let R be a relation on a set X. If R = ≈R , then it holds that R is an equivalence relation. 

An equivalence relation is always included in its clone relation, as is expressed in the following proposition. 

Proposition 5. Let R be a relation on a set X. If R is an equivalence relation, then it holds that R ⊆ ≈R . 

Proof. Let R be an equivalence relation and x , y ∈ X be such that xRy . Let us suppose that x �≈R y . Since R is an equivalence

relation and x �≈R y, it follows that there exists z ∈ X �{ x , y } such that ( zRx and zR c y ) or ( zRy and zR c x ). Due to the symmetry

and transitivity of R , it follows that ( zRy and zR c y ) or ( zRx and zR c x ), which leads to a contradiction. Hence, it holds that x

≈R y and, therefore, R ⊆ ≈R . �

The necessary and sufficient conditions that an equivalence relation needs to satisfy in order to coincide with its clone

relation are provided in the following proposition. In words, an equivalence relation coincides with its clone relation if and

only if there is at most one singleton equivalence class. 

Proposition 6. Let R be a relation on a set X. If R is an equivalence relation, then it holds that R = ≈R if and only if there do not

exist x , y ∈ X such that x � = y , [ x ] = { x } and [ y ] = { y } . 
R R 
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Fig. 4. Graph of an equivalence relation R on the set X = { a, b, c, d, e } . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. ( ⇒ ) Let R be an equivalence relation on X such that R = ≈R and suppose that there exist x , y ∈ X such that x � = y ,

[ x ] R = { x } and [ y ] R = { y } . It follows that xR c z and that yR c z for any z ∈ X �{ x , y }, therefore it holds that x ≈R y , a contradiction

with R = ≈R and xR c y . Hence, there do not exist x , y ∈ X such that x � = y , [ x ] R = { x } and [ y ] R = y . 

( ⇐ ) From Proposition 5 , it follows that R ⊆ ≈R . It remains to prove that ≈R ⊆ R . Let R be an equivalence relation on X

such that there do not exist x , y ∈ X such that x � = y , [ x ] R = { x } and [ y ] R = { y } . Let us suppose that ≈R �R . As R is reflexive, it

holds that there exist x , y ∈ X such that x � = y , x ≈R y and xR c y . Since ([ x ] R � = { x } or [ y ] R � = { y }) and x � = y , it follows that there

exists z ∈ X �{ x , y } such that xRz or yRz . As x ≈R y , it implies that ( xRz and yRz ) or ( yRz and xRz ). Since R is an equivalence

relation, it follows that xRy , a contradiction. Hence, ≈R ⊆ R and, therefore, ≈R = R . �

In general, the fact that R is an equivalence relation does not necessarily lead to ≈R ⊆ R , as can be seen from Example 4 .

Example 4. The relation R defined in Fig. 4 is an equivalence relation on the set X = { a, b, c, d, e } . 
The matrix representations of R and ≈R are given by: 

R = 

a b c d e 
a 
b 
c 
d 
e 

⎛ 

⎜ ⎜ ⎝ 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

⎞ 

⎟ ⎟ ⎠ 

, ≈R = 

a b c d e 
a 
b 
c 
d 
e 

⎛ 

⎜ ⎜ ⎝ 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 0 0 

0 0 0 1 1 

0 0 0 1 1 

⎞ 

⎟ ⎟ ⎠ 

. 

We can see that d ≈R e and dR c e . Hence, it holds that ≈R �⊆ R . Note that it holds that ≈R �⊆ R, due to the fact that there are

two equivalence classes formed by singletons. Note that, as expected due to Proposition 5 , it holds that R ⊆ ≈R . 

The composition of any symmetric relation with its clone relation is always included in that relation. In addition, we will

prove that the clone relation of any symmetric relation is the greatest symmetric relation that satisfies this inclusion. 

Proposition 7. Let R be a relation on a set X. If R is symmetric, then the following two statements hold: 

(i) ≈R is the greatest symmetric relation S such that R ◦S ⊆ R. 

(ii) ≈R is the greatest symmetric relation S such that S ◦R ⊆ R. 

Proof. Let R be a symmetric relation on X . 

(i) Let us suppose that there exists a symmetric relation S on X such that R ◦S ⊆ R and S �⊆≈R . It follows that there exist

x , y ∈ X such that xSy and x �≈R y . As x �≈R y and R is symmetric, it follows that there exists z ∈ X �{ x , y } such that ( zRx

and zR c y ) or ( zRy and zR c x ). Let us consider, w.l.o.g, that zRx and zR c y . Since zRx and xSy , it follows that z ( R ◦S ) y . As

R ◦S ⊆ R , it follows that zRy , a contradiction. Hence, we conclude that S ⊆ ≈R . 

(ii) As R and S are symmetric, it holds that R ◦ S = S ◦ R . Therefore, the result follows from statement ( i ). �

3.3. Interaction of the clone relation with set operations 

This subsection is devoted to discuss the interaction of the clone relation with the most common set operations. 

Proposition 8. Let R and S be two relations on a set X. If R ⊆ S , then the following statements hold: 

(i) ≈R ∩ ≈S �R ⊆ ≈S . 

(ii) ≈S ⊆ ( ≈R ∩ ≈S �R ) ∪ (( ≈R ) 
c ∩ ( ≈S �R ) 

c ) . 

Proof. 

(i) Suppose that R ⊆ S and let x , y ∈ X be such that x ( ≈R ∩ ≈S �R ) y . It follows that x ≈R y and x ≈S �R y . Therefore, for any

z ∈ X �{ x , y }, it holds that 

xSz ⇔ (xRz ∨ x (S \ R ) z) 

⇔ (yRz ∨ y (S \ R ) z) 

⇔ ySz . 

In a similar way, we prove that zSx ⇔ zSy . Hence, it holds that x ≈S y . Therefore, it holds that ≈R ∩ ≈S �R ⊆ ≈S . 
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(ii) Suppose that R ⊆ S and let x , y ∈ X be such that x ≈S y . Since it trivially holds that X 2 = (≈R ∪ (≈R ) 
c ) ∩ (≈S\ R ∪ (≈S\ R 

) c ) , it follows that one of the following statements holds: x ( ≈R ∩ ≈S �R ) y or x ( ≈R ∩ ( ≈S �R ) 
c ) y or x (( ≈R ) 

c ∩ ≈S �R ) y or

x (( ≈R ) 
c ∩ ( ≈S �R ) 

c ) y . We will prove that x (( ≈R ) 
c ∩ ≈S �R ) 

c y and x ( ≈R ∩ ( ≈S �R ) 
c ) c y . 

(a) Suppose that ( x ( ≈R ) 
c y and x ≈S �R y ). Since x ( ≈R ) 

c y , it follows that there exists z ∈ X �{ x , y } such that one of the

following statements holds: ( xRz and yR c z ) or ( yRz and xR c z ) or ( zRx and zR c y ) or ( zRy and zR c x ). Any of these

cases contradicts the fact that ( x ≈S y and x ≈S �R y ). For instance, if ( xRz and yR c z ), then, since R ⊆ S , it follows

that xSz . Since x ≈S y and z ∈ X �{ x , y }, it follows that ySz . On the one hand, since ySz and yR c z , it follows that

y ( S �R ) z . On the other hand, since xRz , it follows that x ( S �R ) c z . a contradiction with the fact that x ≈S �R y . The

other cases where ( yRz and xR c z ) or ( zRx and zR c y ) or ( zRy and zR c x ) are analogously proved. 

(b) Suppose that ( x ≈R y and x ( ≈S �R y ) 
c ). Since x ( ≈S �R ) 

c y , it follows that there exists z ∈ X �{ x , y } such that one of

the following statements holds: ( x ( S �R ) z and y ( S �R ) c z ) or ( y ( S �R ) z and x ( S �R ) c z ) or ( z ( S �R ) x and z ( S �R ) c y ) or

( z ( S �R ) y and z ( S �R ) c x ). Any of these cases contradicts the fact that ( x ≈S y and x ≈R y ). For instance, if ( x ( S �R ) z

and y ( S �R ) c z ), then it follows that ( xSz and xR c z ) and ( yS c z or yRz ). Therefore, it holds that ( xSz and yS c z ) or ( xR c z

and yRz ), a contradiction with the fact that ( x ≈S y and x ≈R y ). The other cases where ( y ( S �R ) z and x ( S �R ) c z ) or

( z ( S �R ) x and z ( S �R ) c y ) or ( z ( S �R ) y and z ( S �R ) c x ) are analogously proved. 

Hence, it holds that ( x ≈R y and x ≈S �R y ) or ( x ( ≈R ) 
c y and x ( ≈S �R ) 

c y ). Therefore, it holds that ≈S ⊆ ( ≈R ∩
≈S �R ) ∪ (( ≈R ) 

c ∩ ( ≈S �R ) 
c ). �

The following corollary follows immediately from statement (ii) of Proposition 8 . 

Corollary 4. Let R and S be two relations on a set X. Then it holds that 

≈R ∪ S ⊆ (≈R ∩ ≈S\ R ) ∪ ((≈R ) 
c ∩ (≈S\ R ) c ) . 

Note that, in general, if R and S are two binary relations on a set X such that S ⊆ R and ≈R and ≈S are their respective

clone relations, then it does not necessarily hold that ≈S ⊆ ≈R , as can be seen in Example 5 . 

Example 5. Let us consider two binary relations R and S on the set X = { a, b, c, d} defined by R = { (a, a ) , (b, b) , (a, b) , (a, c) }
and S = { (a, a ) , (b, b) } . It holds that S ⊆ R , a ≈S b , while a ( ≈R ) 

c b . Hence, ≈S � ≈R . 

The following corollary follows immediately from Proposition 2 . 

Corollary 5. Let ( R i ) i ∈ I be a finite family of relations on a set X. The following statements hold: 

(i) ≈∪ 
i ∈ I 

R i 
= ≈∩ 

i ∈ I 
R c 

i 
. 

(ii) ≈∩ 
i ∈ I 

R i 
= ≈∪ 

i ∈ I 
R c 

i 
. 

In the following, we discuss the interaction of the clone relation with the intersection and the union. 

Proposition 9. Let R and S be two relations on a set X. The following statements hold: 

(i) ≈R ∩ ≈S = ≈R ∩ S ∩ ≈R \ S ∩ ≈S\ R . 
(ii) ≈R ∩ ≈S = ≈R ∪ S ∩ ≈R \ S ∩ ≈S\ R . 

Proof. 

(i) We need to prove that ≈R ∩ ≈S ⊆ ≈R ∩ S ∩ ≈R �S ∩ ≈S �R and that ≈R ∩ S ∩ ≈R �S ∩ ≈S �R ⊆ ≈R ∩ ≈S . 

(a) First, we prove that ≈R ∩ ≈S ⊆ ≈R ∩ S ∩ ≈R �S ∩ ≈S �R . Let x , y ∈ X be such that x ( ≈R ∩ ≈S ) y . It follows that x ≈R y

and x ≈S y . Therefore, for any z ∈ X �{ x , y }, it holds that 

x (R ∩ S) z ⇔ xRz ∧ xSz 

⇔ yRz ∧ ySz 

⇔ y (R ∩ S) z . 

In a similar way, we prove that z ( R ∩ S ) x ⇔ z ( R ∩ S ) y . Hence, it holds that x ( ≈R ∩ S ) y and, thus, that ≈R ∩ ≈S ⊆ ≈R ∩ S .
Moreover, for any z ∈ X �{ x , y }, it holds that 

x (R \ S) z ⇔ xRz ∧ xS c z 

⇔ yRz ∧ yS c z 

⇔ y (R \ S) z . 
In a similar way, we prove that z ( R �S ) x ⇔ z ( R �S ) y . 

Hence, it holds that x ( ≈R �S ) y and, thus, that ≈R ∩ ≈S ⊆ ≈R �S . The fact that ≈R ∩ ≈S ⊆ ≈S �R is proved in an analo-

gous way. 
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Fig. 5. Graphs of four relations on the set X = { a, b, c, d} . 

 

 

 

 

 

 

 

(b) Second, we prove that ≈R ∩ S ∩ ≈R �S ∩ ≈S �R ⊆ ≈R ∩ ≈S . We have that 

≈R ∩ S ∩ ≈R \ S ∩ ≈S\ R = ≈R ∩ S ∩ ≈R \ (R ∩ S) ∩ ≈S\ (R ∩ S) 
= (≈R ∩ S ∩ ≈R \ (R ∩ S) ) ∩ (≈R ∩ S ∩ ≈S\ (R ∩ S) ) . 

From Proposition 8 , it follows that ( ≈R ∩ S ∩ ≈R �( R ∩ S ) ) ⊆ ≈R and ( ≈R ∩ S ∩ ≈S �( R ∩ S ) ) ⊆ ≈S . 

(ii) From ( i ), it follows that ≈R c ∩ ≈S c = ≈R c ∩ S c ∩ ≈R c \ S c ∩ ≈S c \ R c . 
Since ≈R c = ≈R , ≈S c = ≈S , ≈R c ∩ S c = ≈(R ∪ S) c = ≈R ∪ S , R c \ S c = S \ R and S c \ R c = R \ S, it follows that ≈R ∩ ≈S = ≈R ∪ S ∩ ≈S\ R
∩ ≈R \ S . �

The following corollary is a direct result of Proposition 9 . 

Corollary 6. Let R and S be two relations on a set X. The following statements hold: 

(i) ≈R ∩ ≈S ⊆ ≈R ∩ S . 
(ii) ≈R ∩ ≈S ⊆ ≈R ∪ S . 

Note that the converse inclusions do not necessarily hold, as can be seen in Example 6 . 

Example 6. Let R , S , R ∪ S and R ∩ S be the four relations defined on the set X = { a, b, c, d} by the graphs in Fig. 5 . We can

see that: 

(a) a ≈R ∩ S c , while a ( ≈S ) 
c c . Hence, ≈R ∩ S �⊆≈R ∩ ≈S . 

(b) c ≈R ∪ S d , while c ( ≈S ) 
c d . Hence, ≈R ∪ S �⊆≈R ∩ ≈S . 

(c) a ≈R ∪ S b , while a ( ≈R ) 
c b and a ( ≈S ) 

c b . Hence, ≈R ∪ S � ≈R ∪ ≈S . 

(d) a ≈R c , while a ( ≈R ∪ S ) c c . Hence, ≈R ∪ ≈S �⊆≈R ∪ S . 

4. A partition of the clone relation 

De Baets et al. [5] provided a partition of the clone relation for the special case of an order relation. Here, we extend

this partition 

3 to the case of an arbitrary binary relation. 

Definition 2. Let R be a relation on a set X . The following binary relations on X are defined: 

(i) � R = { (x, y ) ∈ X 2 | x ≈R y ∧ xRy ∧ yR c x ∧ x � = y } . 
(ii) � R = { (x, y ) ∈ X 2 | x ≈R y ∧ yRx ∧ xR c y ∧ x � = y } . 

(iii) ◦R = { (x, y ) ∈ X 2 | x ≈R y ∧ xRy ∧ yRx ∧ x � = y } . 
(iv) �R = { (x, y ) ∈ X 2 | x ≈R y ∧ xR c y ∧ yR c x ∧ x � = y } . 

Remark 3. Note that � t 
R 

= � R , ◦t 
R 

= ◦R and �t 
R 

= �R . 

Given Definition 2 , it is immediately clear that the clone relation ≈R of any relation R can be written as follows: 

≈R = � R ∪ � R ∪ ◦R ∪ �R ∪ δ , 

where δ = { (x, y ) ∈ X 2 | x = y } . 
Definition 3. Let R be a relation on a set X . The triplet ( � R , ◦R , �R ) is called the (canonical) partition of the clone relation

≈R . 

Note that in the canonical partition we do not explicitly mention � R (as it equals � t 
R 

) and δ (as it does not depend on the

relation R ). 

Remark 4. As discussed by Roubens and Vincke [10] , any reflexive binary relation Q on a set X allows to partition X 

2 into

four disjoint parts: a strict preference relation P Q = Q ∩ (Q 

t ) c (which is irreflexive and asymmetric) and its transpose P t 
Q 
, an
3 Although the term ‘partition’ is used, any of the binary relations � R , � R , ◦R and �R might be empty. 
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indifference relation I Q = Q ∩ Q 

t (which is reflexive and symmetric) and an incomparability relation J Q = Q 

c ∩ (Q 

t ) c (which

is irreflexive and symmetric) 

X 

2 = P Q ∪ P t Q ∪ I Q ∪ J Q . 

We can see that the partition of the clone relation is closely related with this result. Indeed, extending the above definition

to an arbitrary binary relation R , we can write 

X 

2 = P R ∪ P t R ∪ (I R \ δ) ∪ J R ∪ δ , 

and hence 

≈R = ≈R ∩ X 

2 

= (≈R ∩ P R ) ∪ (≈R ∩ P t R ) ∪ (≈R ∩ (I R \ δ)) ∪ (≈R ∩ J R ) ∪ (≈R ∩ δ) 

= � R ∪ � R ∪ ◦R ∪ �R ∪ δ . 

Example 7. Let R be the relation defined in Example 1 . The matrix representations of the relations � R , � R , ◦R and �R are

given by: 

� R = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

� R = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

◦R = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 0 

0 0 1 0 0 0 

0 1 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

�R = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Note that ≈R can be written as: 

≈R = � R + � R + ◦R + �R + δ . 

From the definition of the partition of the clone relation and from Proposition 2 and Corollary 1 , the following results

are straightforward 

Corollary 7. Let R be a relation on a set X. Then the following statements hold: 

(i) (� R c , ◦R c , �R c ) = (� R , �R , ◦R ) . 

(ii) (� R t , ◦R t , �R t ) = (� R , ◦R , �R ) . 

(iii) (� R d , ◦R d , �R d ) = (� R , �R , ◦R ) . 

Corollary 8. Let R , R ′ and R ′ ′ be three relations on a set X. If R ′ = R ∪ { (x, x ) ∈ X 2 } and R ′′ = R \ { (x, x ) ∈ X 2 } , then it holds that

(i) � R = � R ′ = � R ′′ . 
(ii) � R = � R ′ = � R ′′ . 

(iii) ◦R = ◦R ′ = ◦R ′′ . 
(iv) �R = �R ′ = �R ′′ . 

Note that, depending on the properties of R , some of the relations � R , ◦R and �R may be already determined. 

Proposition 10. Let R be a relation on a set X. The following statements hold: 

(i) If R is symmetric, then � R = � R = ∅ . 
(ii) If R is antisymmetric, then ◦R = ∅ . 

(iii) If R is complete, then �R = ∅ . 
Proof. Let R be a relation on X . 

(i) If R is symmetric, then, for any x , y ∈ X , it holds that xRy and yRx . Hence, it holds that � R = � R = ∅ . 
(ii) If R is antisymmetric, then, for any x , y ∈ X , it holds that xRy and yRx implies that x = y . Hence, it holds that ◦R = ∅ . 
(iii) If R is complete, then, for any x , y ∈ X , it holds that xRy or yRx . Hence, it holds that �R = ∅ . �
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Remark 5. Note that ◦R was not considered in [5] because an order relation is always antisymmetric. In case the relation R

is a total order relation (or, in general, antisymmetric and complete), the relations ◦R and �R are no longer relevant as they

are empty. In this case, the clone relation coincides with the usual covering relation for (total) order relations, as discussed

in [5] . 

The previous proposition serves to characterize the properties of the clone relation of particular types of binary relations,

such as order relations or equivalence relations, in terms of the properties of its partition. For this purpose, we analyse some

basic properties of the relations � R , � R , ◦R and �R . 

Theorem 1. Let R be a relation on a set X. The following statements hold: 

(i) If x � R y , then, for any z ∈ X �{ x , y }, x ≈R z implies that x � R z. 

(ii) If x � R y , then, for any z ∈ X �{ x , y }, x ≈R z implies that x � R z. 

(iii) If x ◦R y , then, for any z ∈ X �{ x , y }, x ≈R z implies that x ◦R z. 

(iv) If x �R y , then, for any z ∈ X �{ x , y }, x ≈R z implies that x �R z. 

Proof. 

(i) Let x , y ∈ X and z ∈ X �{ x , y } be such that x � R y and x ≈R z . Note that x � = y . On the one hand, since xRy , yR c x , x ≈R z

and y ∈ X �{ x , z }, it follows that zRy and yR c z . On the other hand, since zRy , yR c z , x ≈R y and z ∈ X �{ x , y }, it follows

that zRx and xR c z . As x ≈R z , it follows that x � R z . 

(ii) The proof is analogous to that of ( i ). 

(iii) Let x , y ∈ X and z ∈ X �{ x , y } be such that x ◦R y and x ≈R z . Note that x � = y . On the one hand, since xRy , yRx , x ≈R z and

y ∈ X �{ x , z }, it follows that zRy and yRz . On the other hand, since zRy , yRz , x ≈R y and z ∈ X �{ x , y }, it follows that zRx

and xRz . As x ≈R z , it follows that x ◦R z . 

(iv) Let x , y ∈ X and z ∈ X �{ x , y } be such that x �R y and x ≈R z . Note that x � = y . On the one hand, since x ‖ y , x ≈R z and y

∈ X �{ x , z }, it follows that z ‖ y . On the other hand, since z ‖ y , x ≈R y and z ∈ X �{ x , y }, it follows that z ‖ x . As x ≈R z , it

follows that x �R z . �

Corollary 9. Let R be a relation on a set X. Then there are no x , y , z ∈ X such that x � R y and y � R z and z � R x. 

Proof. Suppose that there exist x , y , z ∈ X such that x � R y , y � R z and z � R x . Since xRy , z ≈R x and y ∈ X �{ x , z }, it follows that

zRy , which contradicts zR c y . �

The (ir)reflexivity and (anti)symmetry of the relations � R , � R , � R ∪ � R , ◦R and �R is discussed in the following proposition.

Proposition 11. Let R be a relation on a set X. The following statements hold: 

(i) � R is irreflexive and antisymmetric. 

(ii) � R is irreflexive and antisymmetric. 

(iii) � R ∪ � R is irreflexive and symmetric. 

(iv) ◦R is irreflexive and symmetric. 

(v) �R is irreflexive and symmetric. 

Proof. By definition, the relations � R , � R , �R , ◦R and � R ∪ � R are irreflexive. Next, for any x , y ∈ X , it is immediate to see that

both ( x � R y and y � R x ) and ( x � R y and y � R x ) are impossible; this implies that � R and � R are antisymmetric. Since � t 
R 

= � R and

� t 
R 

= � R , it follows that � R ∪ � R is symmetric. In addition, as ◦t 
R 

= ◦R and �t 
R 

= �R , it follows that ◦R and �R are symmetric. �

In the following proposition, we discuss the (anti)transitivity of the relations � R , � R , � R ∪ � R , ◦R and �R . 

Proposition 12. Let R be a relation on a set X. The following statements hold: 

(i) � R is antitransitive. 

(ii) � R is antitransitive. 

(iii) � R ∪ � R is antitransitive. 

(iv) ◦R ∪ δ is transitive. 

(v) �R ∪ δ is transitive. 

Proof. 

(i) Let x , y , z ∈ X be such that x � R y and y � R z . Suppose that x � R z . It follows that x � R y , x ≈R z and z ∈ X �{ x , y }. Therefore,

from Theorem 1 , it follows that x � R z , a contradiction. Hence, � R is antitransitive. 

(ii) The proof is analogous to that of ( i ). 

(iii) Let x , y , z ∈ X be such that x ( � R ∪ � R ) y and y ( � R ∪ � R ) z . From ( i ) and ( ii ) it follows that ( x � R y and y � R z ) and ( x � R y and

y � R z ) lead to, respectively, x ( � R ) 
c z and x ( � R ) 

c z . In addition, due to Corollary 9 , we have that ( x � R y and y � R z and x � R z )

and ( x � R y and y � R z and x � R z ) are not possible. On the other hand, if x � = z then the cases ( x � R y and y � R z ) or ( x � R y and

y � R z ) are not possible, due to Theorem 1 ; if x = z, then x ( � R ∪ � R ) 
c x , due to the irreflexivity of � R ∪ � R . We conclude

that � ∪ � is antitransitive. 
R R 
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(iv) Let x , y , z ∈ X be such that x ( ◦R ∪ δ) y and y ( ◦R ∪ δ) z . 

(a) If x = z or x = y or y = z, then it trivially holds that x ( ◦R ∪ δ) z . 

(b) The case x � = z , x � = y and y � = z . First, we prove that x ≈R z . Suppose that x �≈R z, then it follows that there exists

t ∈ X �{ x , z } such that ( tRx and tR c z ) or ( tRz and tR c x ) or ( xRt and zR c t ) or ( zRt and xR c t ). If, for instance, ( tRx and

tR c z ), then, since yRz , it follows that t � = y . As tRx , tR c z , x ≈R y , y ≈R z and t ∈ X �{ x , y , z }, it follows that tRy and

tR c y , a contradiction. The other cases where ( tRz and tR c x ) or ( xRt and zR c t ) or ( zRt and xR c t ) are analogously

proved. We conclude that x ≈R z . Second, as z ◦R y , z ≈R x and x ∈ X �{ y , z }, it follows from Theorem 1 that x ◦R z . 

We conclude that x ( ◦R ∪ δ) z and, therefore, ◦R ∪ δ is transitive. 

(v) The proof is similar to that of (i v ) . �

From Propositions 11 and 12 , the following result follows. 

Corollary 10. Let R be a relation on a set X. Then it holds that ( � R ∪ � R ∪ δ) is a tolerance relation and that ( ◦R ∪ δ) and ( �R ∪ δ)

are equivalence relations. 

For any x , y ∈ X , there exists at most one element z such that x ≈R z and z ≈R y and x �≈R y . 

Proposition 13. Let R be a relation on a set X. For any two elements x , y ∈ X , if there exists z ∈ X such that x ≈R z , z ≈R y and

x �≈R y, then it holds that (x � R z and z � R y) or that (y � R z and z � R x), that z is unique and that [ z] ≈R 
= { x, y, z} . 

Proof. Let x , y ∈ X be such that there exists z ∈ X such that x ≈R z , z ≈R y and x �≈R y . This implies that x � = z � = y � = x . Hence,

( x � R z or x � R z or x ◦R z or x �R z ) and z ≈R y . From Theorem 1 and Corollary 10 , it follows that ( x ◦R z or x �R z ) and z ≈R y implies

y ≈R x , a contradiction. We only need to consider the cases ( x � R z or x � R z ) and z ≈R y . From Theorem 1 , it follows that ( x � R z

and z � R y ) or ( y � R z and z � R x ) are the only possible cases. 

Suppose now that z is not unique, i.e. ∃ z ′ ∈ X �{ x , y , z } such that x ≈R z 
′ and y ≈R z 

′ . Therefore, it holds that ( x � R z 
′

and z ′ � R y ) or ( y � R z 
′ and z ′ � R x ). From Theorem 1 , as x � R z and x ≈R z 

′ , it follows that x � R z 
′ , a contradiction. Hence, [ z] ≈R 

=
{ x, y, z} . �

Next, we provide an important result w.r.t. the structure of the intersection of two tolerance classes of the clone relation.

Proposition 14. Let R be a relation on a set X. For any two elements x , y ∈ X , it holds that 

(i) If x ≈R y , then it holds that 

[ x ] ≈R 
∩ [ y ] ≈R 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

[ x ] ≈R 
, if x = y , 

{ x, y } , if x � R y ∨ x � R y , 
{ x, y } ∪ { z ∈ X | z ◦R x ∧ z ◦R y } , if x ◦R y , 
{ x, y } ∪ { z ∈ X | z �R x ∧ z �R y } , if x �R y . 

(ii) If x �≈R y and [ x ] ≈R 
∩ [ y ] ≈R 

� = ∅ , then it holds that 

[ x ] ≈R 
∩ [ y ] ≈R 

= { z} , 
where z ∈ X is the unique element such that x � R z and z � R y or that y � R z and z � R x. 

Proof. 

(i) Let x , y ∈ X be such that x ≈R y . 

(a) If x = y, then it trivially holds that 

[ x ] ≈R 
∩ [ y ] ≈R 

= [ x ] ≈R 
= [ y ] ≈R 

. 

(b) If x � R y , then we will prove that there does not exist any z ∈ [ x ] ≈R 
∩ [ y ] ≈R 

such that z ∈ X �{ x , y }. Suppose that such

z exists. It then follows from Theorem 1 that z � R x and y � R z , a contradiction ( Corollary 9 ). Hence, it holds that 

[ x ] ≈R 
∩ [ y ] ≈R 

= { x, y } . 
The proof is analogous for x � R y . 

(c) If x ◦R y , then, for any z ∈ [ x ] ≈R 
∩ [ y ] ≈R 

such that z ∈ X �{ x , y }, it follows from Theorem 1 that z ◦R x and z ◦R y . Hence,

it holds that 

[ x ] ≈R 
∩ [ y ] ≈R 

= { x, y } ∪ { z ∈ X | z ◦R x ∧ z ◦R y } . 
(d) If x �R y , then, for any z ∈ [ x ] ≈R 

∩ [ y ] ≈R 
such that z ∈ X �{ x , y }, it follows from Theorem 1 that x �R z and y �R z . Hence,

it holds that 

[ x ] ≈R 
∩ [ y ] ≈R 

= { x, y } ∪ { z ∈ X | z �R x ∧ z �R y } . 
(ii) Let x , y ∈ X be such that x �≈R y and [ x ] ≈R 

∩ [ y ] ≈R 
� = ∅ and let z ∈ [ x ] ≈R 

∩ [ y ] ≈R 
. It follows from Proposition 13 that z is

the unique element such that x ≈R z , y ≈R z and that x �≈R y . Hence, it holds that 

[ x ] ≈R 
∩ [ y ] ≈R 

= { z} . 

�
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Example 8. Let R be the relation defined in Example 1 . It holds that [ a ] ≈R 
= { a, d} , [ b] ≈R 

= { b, c} , [ c] ≈R 
= { b, c} , [ d] ≈R 

=
{ a, d} , [ e ] ≈R 

= { e, f } , 
[ f ] ≈R 

= { e, f } . Therefore, it holds that: 

[ a ] ≈R 
∩ [ d] ≈R 

= { a, d} , 
[ b] ≈R 

∩ [ c] ≈R 
= { b, c} , 

[ e ] ≈R 
∩ [ f ] ≈R 

= { e, f } , 
[ e ] ≈R 

∩ [ d] ≈R 
= ∅ . 

Example 9. Let R be the relation defined in Example 2 . For any n ∈ N 

∗ with n � = 1, it holds that [ n ] ≈< = { n − 1 , n, n + 1 }
( [1] ≈< = { 1 , 2 } ). As, for any n 1 , n 2 ∈ N 

∗, the fact that [ n 1 ] ≈< ∩ [ n 2 ] ≈< � = ∅ and that n 1 �≈R n 2 implies that n 1 = n 2 + 2 or that

n 1 = n 2 − 2 , it follows that: 

[ n 1 ] ≈< 
∩ [ n 2 ] ≈< 

= 

{
n 2 − 1 , if n 2 > n 1 , 

n 2 + 1 , if n 1 > n 2 . 

5. The clone relation and the different types of disjoint union 

In this section, we characterize the clone relation of the three different types of union of two relations defined on disjoint

sets. 

For a relation R P defined on a set P , we write P = (P, R P ) and we call P an equipped set. 

Definition 4. An equipped set P = (P, R P ) is called a reduction of another equipped set Q = (Q, R Q ) if the following two

statements hold: 

(i) P ⊆ Q . 

(ii) For any x , y ∈ P , it holds that xR P y if and only if xR Q y . 

If an equipped set is a reduction of another equipped set, then the clone relation of the second one is included in that

of the first, as can be seen in the following proposition. 

Proposition 15. Let P = (P, R P ) be a reduction of Q = (Q, R Q ) . For any x , y ∈ P , it holds that x ≈R Q 
y implies that x ≈R P 

y . 

Proof. Let x , y ∈ P be such that x ≈R Q 
y . It holds that ( zR Q x ⇔ zR Q y ) and ( xR Q z ⇔ yR Q z ), for any z ∈ Q �{ x , y }. Since P = (P, R P )

is a reduction of Q = (Q, R Q ) , it follows that, for any z ∈ P �{ x , y }, it holds that ( zR P x ⇔ zR P y ) and ( xR P z ⇔ yR P z ). Hence, it holds

that x ≈P y . �

Remark 6. Note that, throughout this section, ≈R P 
should be understood as the clone relation of R P in P and not in P ∪ Q .

The same applies to ≈R Q 
. 

Note that the converse of the statement in Proposition 15 does not hold, as can be seen in Example 10 . 

Example 10. Let us consider the sets P = N and Q = R equipped with the usual strict order relation < . It obviously holds

that P = (N , < N ) is a reduction of Q = (R , < R ) . However, it holds that 1 ≈< N 2 , while 1 �≈< R 2 . Hence, if x ≈P y for some x , y

∈ P , then it does not necessarily hold that x ≈Q y . 

For any two equipped sets P = (P, R P ) and Q = (Q, R Q ) , we say that P and Q are disjoint if P and Q are disjoint. The union

of two disjoint equipped sets is called a disjoint union. There are three different types of disjoint union: the nondirectional

disjoint union, the unidirectional disjoint union and the bidirectional disjoint union. 

The most common disjoint union is the nondirectional disjoint union, where the relations between elements in the same

original set are kept and elements in different original sets are considered incomparable. 

Definition 5. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The nondirectional disjoint union P ∪ Q of P

and Q is the equipped set P ∪ Q = (P ∪ Q, R P ∪ R Q ) . 

The unidirectional disjoint union 

4 is the disjoint union where the relations between elements in the same original set

are kept and, for any element x in the first equipped set and any element y in the second equipped set, it holds that x is

related with y but y is not related with x . 

Definition 6. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The unidirectional disjoint union of P and Q is

the equipped set P 

−→ ∪ Q = (P ∪ Q, R P 
−→ ∪ R Q ) , where 

R P 
−→ ∪ R Q = R P ∪ R Q ∪ (P × Q ) . 
4 Note that, if P = (P, R P ) and Q = (Q, R Q ) are two disjoint posets, then the unidirectional disjoint union of P and Q is known as the linear sum P � Q 

(see [3] ). 
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Fig. 6. Graphs of the three different types of disjoint union of two disjoint equipped sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bidirectional disjoint union is the disjoint union where the relations between elements in the same original set are

kept and, for any element x in the first equipped set and any element y in the second equipped set, it holds that x is related

with y and y is related with x . 

Definition 7. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The bidirectional disjoint union of P and Q is

the equipped set P 

←→ ∪ Q = (P ∪ Q, R P 
←→ ∪ R Q ) , where 

R P 
←→ ∪ R Q = R P ∪ R Q ∪ (P × Q ) ∪ (Q × P ) . 

Remark 7. Both the nondirectional disjoint union and the bidirectional disjoint union are commutative, while the unidirec-

tional disjoint union is not. 

The three types of disjoint union are illustrated in the following example. 

Example 11. Let P = { a, b} , Q = { c, d} , R P = { (b, a ) } and R Q = { (c, d) , (d, c) } . The graphs of the three different types of dis-

joint union are shown in Fig. 6 . 

Now we characterize the clone relation of the three different types of disjoint union of two disjoint equipped sets. First,

the clone relation of the nondirectional disjoint union is characterized. 

Proposition 16. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The clone relation ≈R of the nondirectional dis-

joint union R = R P ∪ R Q is given by 

≈R = ≈R P ∪ ≈R Q ∪ (P ‖ × Q ‖ ) ∪ (Q ‖ × P ‖ ) , 
where P ‖ = { x ∈ P | (∀ y ∈ P \ { x } )(x ‖ R P y ) } and Q ‖ = { x ∈ Q | (∀ y ∈ Q \ { x } )(x ‖ R Q y ) } . 
Proof. 

(i) First, we prove that ≈R P 
∪ ≈R Q 

∪ (P ‖ × Q ‖ ) ∪ (Q ‖ × P ‖ ) ⊆≈R . 

(a) Let x , y ∈ P be such that x ≈R P 
y . By definition of the nondirectional disjoint union, it follows that, for any z Q 

∈ Q , ( z Q R 
c x ∧ z Q R 

c y ) and ( xR c z Q ∧ yR c z Q ). Therefore, it holds that ( z Q Rx ⇔ z Q Ry ) and ( xRz Q ⇔ yRz Q ). Since P and Q are

disjoint sets and x ≈R P 
y, it follows that x, y �∈ Q and, for any z P ∈ P �{ x , y }, ( z P R P x ⇔ z P R P y ) and ( xR P z P ⇔ yR P z P ). As P

is a reduction of P ∪ Q , it follows that, for any z ∈ ( P ∪ Q ) �{ x , y }, ( zRx ⇔ zRy ) and ( xRz ⇔ yRz ). Hence, it holds that x

≈R y , and, thus, ≈R P 
⊆≈R . In an analogous way, we can prove that ≈R Q 

⊆≈R . 

(b) Let x ∈ P and y ∈ Q be such that ( x , y ) ∈ ( P ‖ × Q ‖ ). On the one hand, by definition of P ‖ and Q ‖ , it holds that for

any z ∈ ( P ∪ Q ) �{ x , y }, z ‖ R P x and z ‖ R Q y . On the other hand, by definition of the nondirectional disjoint union, it

holds that z ‖ R P y and z ‖ R Q x . Therefore, it follows that z ‖ R x and z ‖ R y , for any z ∈ ( P ∪ Q ) �{ x , y }. This implies that

x ≈R y . Hence, it holds that ( P ‖ × Q ‖ ) ⊆ ≈R . In an analogous way, we can prove that ( Q ‖ × P ‖ ) ⊆ ≈R . 

(ii) Second, we prove that ≈R ⊆≈R P 
∪ ≈R Q 

∪ (P ‖ × Q ‖ ) ∪ (Q ‖ × P ‖ ) . 
Let x , y ∈ P ∪ Q be such that x ≈R y . There are four cases to consider: ( x ∈ P and y ∈ P ) or ( x ∈ Q and y ∈ Q ) or ( x ∈ P

and y ∈ Q ) or ( x ∈ Q and y ∈ P ). 

(a) If x , y ∈ P , then, since P is a reduction of P ∪ Q and x ≈R y , it follows from Proposition 15 that x ≈R P 
y . 

(b) If x , y ∈ Q , then, again from Proposition 15 , it follows that x ≈R Q 
y . 

(c) If x ∈ P and y ∈ Q , then one of the following cases holds: ( x ∈ P �P ‖ and y ∈ Q ) or ( x ∈ P and y ∈ Q �Q ‖ ) or ( x ∈
P ‖ and y ∈ Q ‖ ). We will show that the two first cases lead to a contradiction. 

( α) Suppose that x ∈ P �P ‖ and y ∈ Q , then there exists z ∈ P �{ x } such that zR P x or xR P z . This implies that zRx

or xRz . Since y ∈ Q , it follows that z ‖ R y . From ( zRx or xRz ) and z ‖ R y , it follows that x �≈R y, a contradiction.

( β) Suppose that x ∈ P and y ∈ Q �Q ‖ , then as in ( α), it follows that x �≈R y, a contradiction. 

(d) If x ∈ Q and y ∈ P , it follows analogously to ( c ) that ( x , y ) ∈ Q ‖ × P ‖ . �

Corollary 11. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The partition ( � R , ◦R , �R ) of the clone relation ≈R 

of the nondirectional disjoint union R = R P ∪ R Q is given by: 
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Fig. 7. Graphs of the relations R P and R Q . 

 

 

 

 

 

 

 

 

(i) � R = � R P ∪ � R Q ; 

(ii) ◦R = ◦R P 
∪ ◦R Q 

; 

(iii) �R = �R P 
∪ �R Q 

∪ (P ‖ × Q ‖ ) ∪ (Q ‖ × P ‖ ) . 

These results are illustrated in the following example. 

Example 12. Let P = { a, b, c} , Q = { d, e, f } , R P = { (a, b) } and R Q = { (e, d) , (d, e ) } . The graphs of the relations R P and R Q are

shown in Fig. 7 . 

The matrix representations of ≈R P 
and ≈R Q 

are given by: 

≈R P = 

a b c 
a 
b 
c 

( 

1 1 0 

1 1 0 

0 0 1 

) 

, ≈R Q = 

d e f 
d 
e 
f 

( 

1 1 0 

1 1 0 

0 0 1 

) 

. 

In addition, the matrix representation of the clone relation ≈R P ∪ R Q of the nondirectional disjoint union R P ∪ R Q is given by: 

≈R P ∪ R Q = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 0 0 0 0 

1 1 0 0 0 0 

0 0 1 0 0 1 

0 0 0 1 1 0 

0 0 0 1 1 0 

0 0 1 0 0 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Note that P ‖ = { c} and Q ‖ = { f } and, therefore, it holds that (P ‖ × Q ‖ ) ∪ (Q ‖ × P ‖ ) = { (c, f ) , ( f, c) } . 
Next, the clone relation of the disjoint unidirectional union is characterized. 

Proposition 17. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The clone relation ≈R of the unidirectional disjoint

union R = R P 
−→ ∪ R Q is given by 

≈R = ≈R P ∪ ≈R Q ∪ (P → 

× Q ← 

) ∪ (Q ← 

× P → 

) , 

where P → 

= { x ∈ P | (∀ z P ∈ P \ { x } )(z P R P x ∧ xR c 
P 
z P ) } and Q ← 

= { y ∈ Q | (∀ z Q ∈ Q \ { y } )(yR Q z Q ∧ z Q R 
c 
Q 

y ) } 5 . 
Proof. 

(i) First, we prove that ≈R P 
∪ ≈R Q 

∪ (P → 

× Q ← 

) ∪ (Q ← 

× P → 

) ⊆ ≈R . 

(a) Let x , y ∈ P be such that x ≈R P 
y . By definition of the unidirectional disjoint union, it follows that, for any z Q ∈ Q ,

( z Q R 
c x ∧ z Q R 

c y ) and ( xRz Q ∧ yRz Q ). Therefore, it holds that ( z Q Rx ⇔ z Q Ry ) and ( xRz Q ⇔ yRz Q ). Since P and Q are disjoint

sets and x ≈R P 
y, it follows that x, y �∈ Q and, for any z P ∈ P �{ x , y }, ( z P R P x ⇔ z P R P y ) and ( xR P z P ⇔ yR P z P ). As P is a

reduction of P 

−→ ∪ Q , it follows that, for any z ∈ ( P ∪ Q ) �{ x , y }, ( zRx ⇔ zRy ) and ( xRz ⇔ yRz ). Hence, it holds that x ≈R y ,

and, thus, ≈R P 
⊆≈R . In an analogous way, we can prove that ≈R Q 

⊆≈R . 

(b) Let x ∈ P and y ∈ Q be such that ( x , y ) ∈ P → 

× Q ← 

. Let z ∈ ( P ∪ Q ) �{ x , y }. 

( α) If zRx , then, by definition of unidirectional disjoint union, it must hold that z ∈ P . It follows that ( z , y ) ∈ P

× Q and, therefore, zRy . 

( β) If zRy , then, since y ∈ Q ← 

, it must hold that z ∈ P . Since x ∈ P → 

, it follows that zR P x , and, therefore, zRx . 

( γ ) If xRz , then, since x ∈ P → 

, it must hold that z ∈ Q . Since y ∈ Q ← 

, it follows that yR Q z , and, therefore, yRz . 

( δ) If yRz , then, by definition of unidirectional disjoint union, it must hold that z ∈ Q . It follows that ( x , z ) ∈ P

× Q and, therefore, xRz . 

Hence, it holds that x ≈R y , and, thus, P → 

× Q ← 

⊆ ≈R . In an analogous way, we can prove that Q ← 

× P → 

⊆ ≈R . 
5 Note that both P → 

and Q ← 

are either the empty set or a singleton. 



322 H. Bouremel et al. / Information Sciences 382–383 (2017) 308–325 

Fig. 8. Graphs of the relations R P and R Q . 

 

 

 

 

 

 

(ii) Second, we prove that ≈R ⊆≈R P 
∪ ≈R Q 

∪ (P → 

× Q ← 

) ∪ (Q ← 

× P → 

) . 

Let x , y ∈ P ∪ Q be such that x ≈R y . There are four cases to consider: ( x ∈ P and y ∈ P ), ( x ∈ Q and y ∈ Q ), ( x ∈ P and

y ∈ Q ) or ( x ∈ Q and y ∈ P ). 

(a) If x , y ∈ P , then, since P is a reduction of P 

−→ ∪ Q and x ≈R y , it follows from Proposition 15 that x ≈R P 
y . 

(b) If x , y ∈ Q , then, again from Proposition 15 , it follows that x ≈R Q 
y . 

(c) If x ∈ P and y ∈ Q , then, on the one hand, for any z Q ∈ Q , it follows that xRz Q and z Q R 
c x . Since x ≈R y , it holds

that yRz Q and z Q R 
c y , for any z Q ∈ Q �{ y }. Hence, it holds that y ∈ Q ← 

. On the other hand, for any z P ∈ P , it holds

that z P Ry and yR c z P . Since x ≈R y , it follows that z P Rx and xR c z P , for any z P ∈ P �{ x }. Hence, it holds that x ∈ P → 

.

Thus, it holds that ( x , y ) ∈ P → 

× Q ← 

. 

(d) If x ∈ Q and y ∈ P , it follows analogously to ( c ) that ( x , y ) ∈ Q ← 

× P → 

. �

Corollary 12. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The partition ( � R , ◦R , �R ) of the clone relation ≈R 

of the unidirectional disjoint union R = R P 
−→ ∪ R Q is given by: 

(i) � R = � R P ∪ � R Q ∪ (P → 

× Q ← 

) . 

(ii) ◦R = ◦R P 
∪ ◦R Q 

. 

(iii) �R = �R P 
∪ �R Q 

. 

These results are illustrated in the following example. 

Example 13. Let P = { a, b, c} , Q = { d, e, f } , R P = { (a, b) , (c, b) } and R Q = { (e, d) , (e, f ) } . The graphs of the relations R P and

R Q are shown in Fig. 8 . 

The matrix representations of ≈R P 
and ≈R Q 

are given by: 

≈R P = 

a b c 
a 
b 
c 

( 

1 0 1 

0 1 0 

1 0 1 

) 

, ≈R Q = 

d e f 
d 
e 
f 

( 

1 0 1 

0 1 0 

1 0 1 

) 

. 

In addition, the matrix representation of the clone relation ≈
R P 

−→ ∪ R Q of the unidirectional disjoint union R P 
−→ ∪ R Q is given by: 

≈
R P 

−→ ∪ R Q = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 1 0 0 0 

0 1 0 0 1 0 

1 0 1 0 0 0 

0 0 0 1 0 1 

0 1 0 0 1 0 

0 0 0 1 0 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Note that P → 

= { b} and Q ← 

= { e } and, therefore, it holds that (P → 

× Q ← 

) ∪ (Q ← 

× P → 

) = { (b, e ) , (e, b) } . 
As the unidirectional disjoint union is not commutative, we also analyse the unidirectional disjoint union R Q 

−→ ∪ R P . The

matrix representation of the clone relation ≈
R Q 

−→ ∪ R P of the unidirectional disjoint union R Q 
−→ ∪ R P is given by: 

≈
R Q 

−→ ∪ R P = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 1 0 0 0 

0 1 0 0 0 0 

1 0 1 0 0 0 

0 0 0 1 0 1 

0 0 0 0 1 0 

0 0 0 1 0 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

One may note that ≈
R P 

−→ ∪ R Q and ≈
R Q 

−→ ∪ R P do not coincide. For instance, it holds that b ≈
R P 

−→ ∪ R Q e but b �≈
R Q 

−→ ∪ R P e . 

We finish this subsection by characterizing the clone relation of the bidirectional disjoint union. 
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. 
Proposition 18. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The clone relation ≈R of the bidirectional disjoint

union R = R P 
←→ ∪ R Q is given by 

≈R = ≈R P ∪ ≈R Q ∪ (P ↔ 

× Q ↔ 

) ∪ (Q ↔ 

× P ↔ 

) , 

where P ↔ 

= { x ∈ P | (∀ z P ∈ P \ { x } )(xR P z P ∧ z P R P x ) } and Q ↔ 

= { y ∈ Q | (∀ z Q ∈ Q \ { y } )(yR Q z Q ∧ z Q R Q y ) } . 
Proof. 

(i) First, we prove that ≈R P 
∪ ≈R Q 

∪ (P ↔ 

× Q ↔ 

) ∪ (Q ↔ 

× P ↔ 

) ⊆≈R . 

(a) Let x , y ∈ P be such that x ≈R P 
y . By definition of the bidirectional disjoint union, it follows that, for any z Q ∈ Q ,

( z Q Rx ∧ z Q Ry ) and ( xRz Q ∧ yRz Q ). Therefore, it holds that ( z Q Rx ⇔ z Q Ry ) and ( xRz Q ⇔ yRz Q ). Since P and Q are disjoint

sets and x ≈R P 
y, it follows that x, y �∈ Q and, for any z P ∈ P �{ x , y }, ( z P R P x ⇔ z P R P y ) and ( xR P z P ⇔ yR P z P ). As P is a

reduction of P 

←→ ∪ Q , it follows that, for any z ∈ ( P ∪ Q ) �{ x , y }, ( zRx ⇔ zRy ) and ( xRz ⇔ yRz ). Hence, it holds that x ≈R y ,

and, thus, ≈R P 
⊆≈R . In an analogous way, we prove that ≈R Q 

⊆≈R . 

(b) Let x ∈ P and y ∈ Q be such that ( x , y ) ∈ P ↔ 

× Q ↔ 

. Let z ∈ ( P ∪ Q ) �{ x , y }. 

( α) If zRx , then we distinguish two cases: z ∈ Q or z ∈ P . If z ∈ Q , then, by definition of Q ↔ 

, it follows that zR Q y .

Hence, it holds that zRy . If z ∈ P , then it holds that ( z , y ) ∈ P × Q and, therefore, zRy . 

( β) If zRy , then we distinguish two cases: z ∈ Q or z ∈ P . If z ∈ Q , then it holds that ( z , x ) ∈ Q × P and, hence,

zRx . If z ∈ P , then by definition of P ↔ 

, it follows that zR P x . Hence, it holds that zRx . 

( γ ) If xRz , then we prove in an analogous way to ( α) that yRz . 

( δ) If yRz , then we prove in an analogous way to ( β) that xRz . 

Hence, it holds that x ≈R y , and, thus, P ↔ 

× Q ↔ 

⊆ ≈R . In an analogous way, we can prove that Q ↔ 

× P ↔ 

⊆ ≈R . 

(ii) Second, we prove that ≈R ⊆≈R P 
∪ ≈R Q 

∪ (P ↔ 

× Q ↔ 

) ∪ (Q ↔ 

× P ↔ 

) . 

Let x , y ∈ P ∪ Q be such that x ≈R y . There are four cases to consider: ( x ∈ P and y ∈ P ) or ( x ∈ Q and y ∈ Q ) or ( x ∈ P

and y ∈ Q ) or ( x ∈ Q and y ∈ P ). 

(a) If x , y ∈ P , then, since P is a reduction of P 

←→ ∪ Q and x ≈R y , it follows from Proposition 15 that x ≈R P 
y . 

(b) If x , y ∈ Q , then, again from Proposition 15 , it follows that x ≈R Q 
y . 

(c) If x ∈ P and y ∈ Q , then, on the one hand, since x ∈ P , it follows, by definition of bidirectional disjoint union,

that xRz Q and z Q Rx , for any z Q ∈ Q . Since x ≈R y , it follows that yRz Q and z Q Ry , for any z Q ∈ Q �{ y }. Hence, it

holds that y ∈ Q ↔ 

. On the other hand, since y ∈ Q , it follows that yRz P and z P Ry , for any z P ∈ P . Since x ≈R y , it

follows that xRz P and z P Rx , for any z P ∈ P �{ x }. Hence, it holds that x ∈ P ↔ 

. Thus, it holds that ( x , y ) ∈ P ↔ 

× Q ↔ 

.

(d) If x ∈ Q and y ∈ P , it follows analogously to ( c ) that ( x , y ) ∈ Q ↔ 

× P ↔ 

. �

Corollary 13. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The partition ( � R , ◦R , �R ) of the clone relation ≈R

of the bidirectional disjoint union R = R P 
←→ ∪ R Q is given by: 

(i) � R = � R P ∪ � R Q ; 

(ii) ◦R = ◦R P 
∪ ◦R Q 

∪ (P ↔ 

× Q ↔ 

) ∪ (Q ↔ 

× P ↔ 

) ; 

(iii) �R = �R P 
∪ �R Q 

. 

These results are illustrated in the following example. 

Example 14. Let P = { a, b, c} , Q = { d, e, f } , R P = { (a, c) , (c, a ) , (c, b) , (b, c) } and R Q = { (d, e ) , (e, d) , (d, f ) , ( f, d) , (e, f ) , ( f, e ) } 
The graphs of the relations R P and R Q are shown in Fig. 9 . 

The matrix representations of ≈R P 
and ≈R Q 

are given by: 

≈R P = 

a b c 
a 
b 
c 

( 

1 1 0 

1 1 0 

0 0 1 

) 

, ≈R Q = 

d e f 
d 
e 
f 

( 

1 1 1 

1 1 1 

1 1 1 

) 

. 
Fig. 9. Graphs of the relations R P and R Q . 
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In addition, the matrix representation of the clone relation ≈
R P 

←→ ∪ R Q of the bidirectional disjoint union R P 
←→ ∪ R Q is given by: 

≈
R P 

←→ ∪ R Q = 

a b c d e f 
a 
b 
c 
d 
e 
f 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 0 0 0 0 

1 1 0 0 0 0 

0 0 1 1 1 1 

0 0 1 1 1 1 

0 0 1 1 1 1 

0 0 1 1 1 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Note that P ↔ 

= { c} and Q ↔ 

= { d, e, f } and, therefore, it holds that (P ↔ 

× Q ↔ 

) ∪ (Q ↔ 

× P ↔ 

) =
{ (c, d) , (c, e ) , (c, f ) , (d, c) , (e, c) , ( f, c) } . 

We conclude this section by discussing when the clone relation of the different types of disjoint union of R P and R Q 
coincide with the union of the clone relations of R P and R Q . 

Theorem 2. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The following statements hold: 

(i) ≈R P ∪ R Q = ≈R ∪ ≈Q if and only if ( ∀ x ∈ P )( ∃ y ∈ P �{ x })( xR P y ∨ yR P x ) ∨ ( ∀ x ∈ Q )( ∃ y ∈ Q �{ x })( xR Q y ∨ yR Q x ) . 

(ii) ≈
R P 

−→ ∪ R Q = ≈R ∪ ≈Q if and only if (∀ x ∈ P )(∃ y ∈ P \ { x } )(xR P y ∨ yR c 
P 
x ) ∨ (∀ x ∈ Q )(∃ y ∈ Q \ { x } )(xR c 

Q 
y ∨ yR Q x ) . 

(iii) ≈
R P 

←→ ∪ R Q = ≈R ∪ ≈Q if and only if (∀ x ∈ P )(∃ y ∈ P \ { x } )(xR c 
P 
y ∨ yR c 

P 
x ) ∨ (∀ x ∈ Q )(∃ y ∈ Q \ { x } )(xR c 

Q 
y ∨ yR c 

Q 
x ) . 

Proof. 

(i) Note that, due to Proposition 16 , (≈R P ∪ R Q = ≈R ∪ ≈Q ) is equivalent to (P ‖ = ∅ ) ∨ (Q ‖ = ∅ ) . Furthermore, it trivially fol-

lows that, by definition of P ‖ and Q ‖ , (P ‖ = ∅ ) ∨ (Q ‖ = ∅ ) is equivalent to ( ∀ x ∈ P )( ∃ y ∈ P �{ x })( xR P y ∨ yR P x ) ∨ ( ∀ x ∈ Q )( ∃ y
∈ Q �{ x })( xR Q y ∨ yR Q x ). 

(ii) Note that, due to Proposition 17 , (≈
R P 

−→ ∪ R Q = ≈R ∪ ≈Q ) is equivalent to (P → 

= ∅ ) ∨ (Q ← 

= ∅ ) . Furthermore, it trivially

follows that, by definition of P → 

and Q ← 

, (P → 

= ∅ ) ∨ (Q ← 

= ∅ ) is equivalent to (∀ x ∈ P )(∃ y ∈ P \ { x } )(xR P y ∨ yR c 
P 
x ) ∨

(∀ x ∈ Q )(∃ y ∈ Q \ { x } )(xR c 
Q 

y ∨ yR Q x ) . 

(iii) Note that, due to Proposition 18 , (≈
R P 

←→ ∪ R Q = ≈R ∪ ≈Q ) is equivalent to (P ↔ 

= ∅ ) ∨ (Q ↔ 

= ∅ ) . Furthermore, it trivially

follows that, by definition of P ↔ 

and Q ↔ 

, (P ↔ 

= ∅ ) ∨ (Q ↔ 

= ∅ ) is equivalent to (∀ x ∈ P )(∃ y ∈ P \ { x } )(xR c 
P 
y ∨ yR c 

P 
x ) ∨

(∀ x ∈ Q )(∃ y ∈ Q \ { x } )(xR c 
Q 

y ∨ yR c 
Q 

x ) . �

Corollary 14. Let P = (P, R P ) and Q = (Q, R Q ) be two disjoint equipped sets. The following statements hold: 

(i) If either R P or R Q is complete, then ≈R P ∪ R Q = ≈R ∪ ≈Q . 

(ii) If either R P or R Q is symmetric, then ≈
R P 

−→ ∪ R Q = ≈R ∪ ≈Q . 

(iii) If either R P or R Q is antisymmetric, then ≈
R P 

←→ ∪ R Q = ≈R ∪ ≈Q . 

6. Conclusions and future research lines 

In this work, we have extended the notion of clone relation of a strict order relation to an arbitrary binary relation.

Throughout this paper, the basic properties of this clone relation have been analysed. We have also proposed a partition of

the clone relation in terms of three different types of pairs of clones. One type of pairs of clones leads to an antitransitive

relation, while both the two other types of pairs of clones lead to a transitive relation. This partition of the clone relation

has not only been an important tool in the proofs of this paper, but it also helps to gain a deeper understanding of the

structure of the clone relation and it will be a key element in future work. Finally, the clone relation of the three different

types of disjoint union has been characterized. 

Future work is anticipated in multiple directions. First, we will exploit the properties of the clone relation provided in

this paper for characterizing the fuzzy tolerance relations or fuzzy equivalence relations that a binary relation is compatible

with. Second, we will extend the clone relation of a binary relation to fuzzy relations. In this context, connections with the

field of fuzzy preference modelling, in particular the study of additive fuzzy preference structures [4,14] , will be explored.

Third, sets of clones, which are a generalization of pairs of clones in the sense of this paper, have already been analysed by

Tideman in the field of social choice theory for the special case of total order relations. These sets of clones will be extended

to an arbitrary binary relation in the near future. 
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