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Abstract. Kernel functions serve the central goal of creating new search directions for the primal-dual interior-

point algorithm to solve linear optimization problems. A significantly improved primal-dual interior-point algo-

rithm for linear optimization is presented based on a novel kernel function. We show a primal-dual interior-point

technique for linear optimization based on a class of kernel functions that are eligible. This research presents a

new efficient kernel function-based primal-dual IPM algorithm for semidefinite programming problems based on

the Nesterov-Todd (NT) direction. With a new and simple technique, we propose a new kernel function to obtain

an optimal solution of the perturbed problem (SDP)µ . We obtain the best-known complexity results,for small-

and large-update namely O

(
p

p+1
2p √n log

tr
(
X0S0

)
ε

)
and O

(
(pn)

p+1
2p log

tr
(
X0S0

)
ε

)
large update To prove the

effectiveness of our proposed kernel function, we compare our numerical results with some alternatives presented

by Touil et al. (2017).
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1. INTRODUCTION

Semi-defined programming extends linear programming where vector variables are changed

to matrix variables. In particular, an optimization problem is defined as a semi-defined opti-

mization problem (SDO) in its primal form.

(P) min{C •X , Ai •X = bi, 1≤ i≤ m, X � 0} ,

and its dual problems.

(D) max

{
bT y :

m

∑
i=1

yiAi +S =C, S� 0

}
,

where C, Ai ∈ Sn, 1 ≤ i ≤ m, b = (b1,b2, ...,bm) ∈ Rm, y ∈ Rm. Here Sn denotes the space

of n× n real symmetric matrices. In addition, X � 0 indicates that X is a symmetric pos-

itive semidefinite matrix. The operator • denotes the standard inner product in Sn, i.e.,

C • X =tr(CX) =
n
∑
j=1

n
∑

i=1
Ci jXi j, in which tr represents the trace. Moreover, the matrices Ai

are linearly independent.

Semidefinite programs are well known for their applications to different optimization prob-

lems. It is popular and widely used in mathematical programming and other fields, such as

engineering and science, such as control theory, electronic structure problems, and statistics.

[1,2]. Many IPMs for LO (e.g., [3,4,5,6,7]) are extended to SDO with great success due to

their polynomial complexity and practical efficiency. For a detailed review, the reader is di-

rected to [2,8,9].

The IPM relies on the barrier functions, which are defined by a large class of univariate

functions, popularly referred to as the eligible kernel functions. [4], which has recently been

efficiently utilized to construct new primal-dual IPMs for various optimization problems. Com-

pared to the logarithmic kernel function, using certain kernel functions reduces the difference

in complexity between methods with large updates and methods with small updates.

This paper aims is to create a new class of IPMs for SDO with large and small updates based

on the following parametric kernel function: a two-barrier term.

(1) ψ (t) = (p+2) t2− (p+3) t− log(t)+
1
t p , p≥ 2

where p is a parameter.
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We show that the iteration bounds are O

(
(np)

p+1
2p log

tr
(
X0S0)
ε

)
and

O

(
p

p+1
2p
√

n log
tr
(
X0S0)
ε

)
which are at least as good as the current best known bounds,

which in some situations are at least as good as the current best known bounds, so

far, O

(
√

n log(n) log
tr
(
X0S0)
ε

)
. For small-update methods, the iteration bounds are

O(
√

n log
tr
(
X0S0)
ε

), which are currently the best-known bounds. Based on the proposed

kernel function, we show that the worst-case iteration complexity for primal-dual IPMS is

O
(

n
2
3 log n

ε

)
, which improves on the complexity achieved by El Ghami et al. in [3].

The structure of that paper is as follows: In Section 2, we start by going over the basics of

IPMs for SDO, like the central path and the NT-search directions. Section 3 presents details

concerning the parametric kernel function and barrier function. Section 4 presents the complex-

ity results of small-and large-update algorithms for SDO, and some numerical results. Finally,

some concluding remarks follow in Section 5.

These are some notes that have been used throughout this paper. The sets of real, nonnegative

real, and positive real vectors with n components are denoted by Rn, Rn
+, and Rn

++, respectively.

E denoted an n× n identity matrix. The trace of a n× n matrix X is denoted by tr(X) =

∑
n
i=1 Xii, tr(X0Y 0) = n, Sn, S+, and Sn

++ denote the cone of symmetric, symmetric positive

semidefinite, and symmetric positive definite n× n matrices, respectively. For m ∈ R, dme

denotes the smallest integer greater than or equal to m.

2. PRELIMINARIES

2.1. Central path and classical NT search direction for SDO. In this section, we define the

central path and get the Nesterov-Todd search direction for SDO. We suppose (P) and (D) meet

the interior point condition (IPC), i.e., there exists a
(
X0 � 0,y0,S0 � 0

)
. Moreover, we may

assume that X0 = S0 = E, where E is the n×n identity matrix such that

Ai •X0 = bi, 1≤ i≤ m,
m

∑
i=1

y0
i Ai +S0 =C, X0 � 0, S0 � 0.

The search for an optimum solution for problems (P) and (D) is similar to the resolution of the

following system.
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(2)


Ai •X = bi, 1≤ i≤ m, X � 0,
m
∑

i=1
yiAi +S =C, S� 0,

XS = 0.

The key principle of primal-dual IPM is to replace the complementarity condition in (2) with

the parameterized equation XS = µE (µ > 0). This provides the next system.

(3)


Ai •X = bi, 1≤ i≤ m, X � 0,
m
∑

i=1
yiAi +S =C, S� 0,

XS = µE.

According to the hypotheses, the system (3) has a unique solution (X(µ),y(µ),S(µ)) for any

µ > 0.

The central path or central trajectory [9] is the set of µ-centers, with µ > 0. If µ −→ 0, the

central path limit provides an optimum solution for (P) and (D) [2]. Therefore, we use Newton’s

approach to the system (3) to determine the search direction for SDO. We get

(4)


Ai •∆X = 0, 1≤ i≤ m, X � 0,
m
∑

i=1
∆yiAi +∆S = 0, S� 0,

X∆S+∆XS = µE−XS.

It is clear that ∆S is symmetric due to the second equation in (4).

However it is important to note that ∆X is not necessarily symmetrical.

Many researchers have found various ways to render the third equation of the Newton system

above (4)

symmetrical so that the new system that is made has only one symmetric solution.

Different choices of symmetrizing the third equation of (4) are proposed. In this work , we

use the NT-symmetrization scheme [10]. Let’s

P := X
1
2 (X

1
2 SX

1
2 )−

1
2 X

1
2 = S−

1
2

(
S

1
2 XS

1
2 )
) 1

2
S−

1
2 ,
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Moreover, also define D = P
1
2 , the matrix D can rescale X and S to the same matrix V, defined

by

(5) V =
1
√

µ
D−1XD−1 =

1
√

µ
DSD =

1
√

µ
(D−1XSD)

1
2 .

Note that the matrices D and V are symmetric and positive definite.

From (5), and after a few simple reductions, the NT search direction (DX ,∆y,DS) matches

the following system:

(6)


Āi •DX = 0, 1≤ i≤ m,
m
∑

i=1
∆yiĀi +DS = 0,

DX +DS =V−1−V.

with

(7)
Āi =

1√
µ

DAiD, 1≤ i≤ m,

DX = 1√
µ

D−1∆XD−1, DS =
1√
µ

D∆SD

The unique solution (DX ,∆y,DS) of the system (6) is called NT search direction. The first two

equations in the system (6) imply that DX and DS are orthogonal:

tr(DX DS) = tr(DSDX) = 0.

Let us review some fundamental concepts and result-related matrix functions [11,12] that will

be used to define the algorithm.

Definition 2.1. Let V ∈ Sn
++ and

V = QT diag(λ1(V ),λ2(V ), ···,λn(V ))Q,

where Q is any orthonormal matrix that diagonalizes V , and let ψ(t) be defined as in (1) . The

matrix valued-function ψ(V ) : Sn
++ −→ Sn is defined by

(8) ψ(V ) = QT diag(ψ(λ1(V )),ψ (λ2(V )) , ...,ψ (λn(V )))Q.

Note that ψ(V ) depends only on the restriction of ψ(t) to the set of eigenvalues of V . Assume

that ψ(t) is twice differentiable, for t > 0, the derivatives ψ ′(t) and ψ ′′(t) are well-defined. As a

result, by replacing ψ(λi(V )) in (11) with ψ ′(λi(V )) and ψ ′′(λi(V )), we obtain that the matrix
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functions ψ ′(V ) and ψ ′′(V ) are also defined. Like the case LO, the real-valued matrix function

Ψ(V ) is defined as follows.

Definition 2.2. We define Ψ(V ) : Sn
++→ R+ by:

(9) Ψ(V ) = tr(ψ(V )) =
n

∑
i=1

ψ(λi(V )),

where ψ(V ) is given by (8) .

Referring to [8,13], the right side of the third equation of (6), V−1 −V , is replaced by

−ψ ′(V ). Therefore, this system might be rebuilt as follows:

(10)


Āi •DX = 0, 1≤ i≤ m,
m
∑

i=1
∆yiĀi +DS = 0,

DX +DS =−ψ ′(V ).

By taking a default step size α along the search direction, we construct a new triple (X+,y+, S+)

according to

(11) X+ = X +α∆X , y+ = y+α∆y, S+ = S+α∆S.

It is easy to check that.

Ψ(V ) = 0⇔V = E⇔ DX = DS = 0n×n⇔ X = X (µ) ,S = S (µ) .

The algorithm corresponding to the primal-dual IPM for the SDO is based on our kernel

function summarized in Algorithm 1

Algorithm 1. Generic Interior Point Algorithm for SDO

Input

a threshold parameter τ ≥ 1;

an accuracy parameter ε > 0;

a fixed barrier update parameter θ , 0 < θ < 1;

X0 � 0, S0 � 0 and µ0 = 1 such that Ψ
(
X0,S0,µ0)≤ τ.
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begin

X := X0; S = S0; µ = µ0

while nµ ≥ ε do

begin

µ := (1−θ)µ

while Ψ(X ,S,µ)≥ τ do

begin

Solve system (10) and use (7) to obtain (∆X , ∆y, ∆S)

Determine a suitable step size α

Update (X ,y,S) := (X ,y,S)+α (∆X ,∆y,∆S) .

end

end

3. PROPERTIES OF THE KERNEL FUNCTION AND THE BARRIER FUNCTION

First, we study the essential characteristics of the kernel function. ψ(t). The precise details

are given in [5].

3.1. Kernel function properties. We begin with some characteristics. For ψ , the first three

derivatives are as follows:

ψ
′ (t) = 2(p+2) t− (p+3)− p

t p+1 −
1
t
,(12)

ψ
′′ (t) = 2(p+2)+

1
t2 +

p(p+1)
t p+2 , for t > 0, p≥ 2,(13)

ψ
′′′ (t) = −

(
p(p+1)(p+2)

t p+3 +
2
t3

)
.(14)

From (13) , we have

(15) ψ
′′ (t)> 2(p+2) , p≥ 2, t > 0.

It follows that ψ (1) = ψ ′ (1) = 0. Moreover, it is easy to confirm that

limψ (t)
t−→0+

= limψ (t)
t−→∞

= ∞.
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Due to the conditions ψ (1) = ψ ′ (1) = 0, it is possible to describe ψ (t) entirely by its second

derivative.

(16) ψ (t) =
∫ t

1

∫ x

1
ψ
′′ (y)dydx.

The following lemma helps prove that (1) is an effective kernel function.

Lemma 3.1. Let ψ (t) be as defined in (1). Then

a) ψ ′′ (t)> 1,

b) ψ ′′′ (t)< 0,

c) tψ ′′ (t)+ψ ′ (t)> 0,

d) tψ ′′ (t)−ψ ′ (t)> 0.

Proof. Inequalities a) and b) immediately follows from (13) and (14) , respectively. Next, we

prove that (c) holds. Using (13) and p≥ 2

tψ ′′ (t)+ψ
′ (t) = (4p+8) t +

p2

t p+1 − (p+3) .

Let

h(t) = (4p+8) t +
p2

t p+1 − (p+3) .

Then

h′ (t) =
−p2 (p+1)

t p+2 +4p+8,

h′′ (t) =
p2 (p+1)(p+2)

t p+3 > 0, for all t > 0.

Let h′ (t) = 0, we get tp =
(

p2(p+1)
4p+8

) 1
p+2

. Because h(t) is strictly convex and has a global

minimum, h(tp)> 0. We have the result. Furthermore, for proving (d) we have

tψ ′′ (t)−ψ
′ (t) = p+3+

p
t p+1 (p+2)+

2
t
> 0, p≥ 2.

This completes the proof. �

Lemma 3.2 (Proposition 3 in [14]). For any V1, V2 � 0,

Ψ

([
V

1
2

1 V2V
1
2

1

] 1
2
)
≤ 1

2
(Ψ(V1)+Ψ(V2)) .
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As an observation, we offer some results about the new kernel function.

Lemma 3.3. For ψ (t), the following results hold:

(p+2)(t−1)2 ≤ ψ (t)≤ 1
4(p+2)

ψ
′ (t)2 , t > 0,(17)

ψ ′ (t)
2

(t−1) ≤ ψ (t)≤ ψ ′′ (1)
2

(t−1)2 , t ≥ 1,(18)

Proof. For, (17) , it obtained by using (15) and (16) for all t > 0, then we have

ψ (t) =
∫ t

1

∫ x

1
ψ
′′ (y)dydx≥ 2(p+2)

∫ t

1

∫ x

1
dydx

= 2(p+2)
∫ t

1
(x−1)dx = (p+2)(t−1)2 ,

this demonstrates the first inequality. The second inequality may be calculated as follows

ψ (t) =
∫ t

1

∫ x

1
ψ
′′ (y)dydx≤ 1

2(p+2)

∫ t

1

∫ x

1
ψ
′′ (x)ψ

′′ (y)dydx

=
1

2(p+2)

∫ t

1
ψ
′′ (x)ψ

′ (x)dx =
1

4(p+2)
[
ψ
′ (t)
]2
.

For (18) if f (t) = 2ψ (t) − (t−1)ψ ′ (t), then f ′(t) = ψ ′ (t) − ψ ′′ (t)(t − 1), f ′′(t) =

−(t−1)ψ ′′′ (t) and f (1) = f ′(1) = 0. Since ψ ′′′ (t) < 0, we deduce that f ′′(t) ≥ 0, which

implies that f ′ is increasing. Thus, f ′(t) ≥ 0 for t ≥ 1. Similarly, f (t) ≥ 0. This proves left

inequality.

To prove right inequality, by using Taylor’s development and the fact ψ (1) = ψ ′ (1) = 0,

ψ ′′′ (t)< 0, ψ ′′ (1) = p2 +3p+5, we have for some ξ , such that 1≤ ξ ≤ t.

ψ (t) = ψ (1)+ψ
′ (1)(t−1)+

1
2

ψ
′′ (1)(t−1)2 +

1
6

ψ
(3) (ξ )(ξ −1)3

≤
(

p2 +3p+5
)

2
(t−1)2 .

�

Remark 1. Let g(t) = (p+3) t − 1
t p + log(t) , t > 0. Then ψ (t) = −g(t) + (p+2) t2 since

g′ (t) = (p+3)+
p

t p+1 +
1
t
> 0, g(t) is monotically increazing with respect to t ≥ 1.

Let ρ : [0,+∞)−→ [1,+∞) be the inverse function of ψ (t) for t ≥ 1 and ρ : [0,+∞)−→ (0,1]

the inverse function of −ψ ′(t)
2 restricted to the interval (0,1] . This leads us to the next lemma.
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Lemma 3.4. We have √
u

p+2
+1 ≤ ρ ≤

√
u

p+2
+1, u≥ 0.(19)

ρ (z) ≥
(

p
2z+ p

) 1
p+1

, z≥ 0.(20)

Proof. For (19), let u = ψ (t) t ≥ 1. Then ρ (u) = t, using (17) we have u = ψ (t) ≥

(p+2)(t−1)2 , so

t = ρ (u)≤
√

u
p+2

+1.

By the definition of ψ (t) we have u = ψ (t) =−g(t)+(p+2) t2. Using Remark 2 and g(1) =

p+2, we have g(t)≥ p+2, t ≥ 1. Hence, t2 = u+g(t)
p+2 ≥

u+p+2
p+2 = 1+ u

p+2 .

This implies that

t = ρ (u)≥
√

1+
u

p+2
.

For (20) . Let z = −ψ ′(t)
2 for 0 < t ≤ 1. Due to the definition of ρ, ρ (z) = t, z ≥ 0. and 2z =

−ψ ′ (t) , we have p
t p+1 = 2z+2(p+2) t− 1

t − p−3 because g : t −→ 2(p+2) t− 1
t − p−3 is

monotone increasing with respect to t ∈ (0,1] g′ (t) = 2p+ 4+ 1
t2 > 0, g(1) = p and hence,

p
t p+1 ≤ 2z+ p. That is

ρ (z) = t ≥
(

p
p+2z

) 1
p+1

.

This completes the proof. �

Lemma 3.5. If β ≥ 1. Then

ψ (β t)≤ ψ (t)+(p+2)
(
β

2−1
)

t2.

Proof. Using Remark 2 we have g(β t)−g(t)≥ 0 for β ≥ 1.

Hence

ψ (β t) = (p+2)β
2t2−g(β t)+(p+2) t2 +g(t)− (p+2) t2−g(t)

= (p+2)β
2t2−g(β t)+ψ (t)+g(t)− (p+2) t2

= ψ (t)+(p+2)
(
β

2−1
)

t2− (g(β t)−g(t))

≤ ψ (t)+(p+2)
(
β

2−1
)

t2.
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This completes the proof. �

4. ALGORITHM ANALYSIS FOR SDO

In this, we examine the complexity of the SDO interior-point algorithm for both small and

large updates. The algorithm is analyzed using the norm-based proximity measure.

(21) δ (V ) :=
1
2

∥∥Ψ
′ (V )

∥∥= 1
2

√
n

∑
i=1

[ψ ′ (λi (V ))]2 =
1
2
‖DX +DS‖ .

The following lemma explains the relationship between two proximity measures.

Lemma 4.1. Let δ (V ) be defined as in (21). Then we have

δ (V )≥
√
(p+2)Ψ(V ), V ∈ Sn

++, p≥ 2.

Proof. Using the second inequality of (17) we have

Ψ(V ) = tr(ψ (V )) =
n

∑
i=1

ψ (λi (V ))≤ 1
4(p+2)

n

∑
i=1

[
ψ
′ (λi (V ))

]2
=

1
4(p+2)

n

∑
i=1
‖∇Ψ(V )‖2 =

1
p+2

δ
2 (V ) .

Hence, we have

δ (V )≥
√
(p+2)Ψ(V ).

This completes the proof. �

Remark 2. We always make the following suppositions τ ≥ 1. Using Lemma 6 and the assump-

tion that Ψ(v)≥ τ, we have

δ (V )≥
√

p+2.

The following theorem is an extension of (Theorem 3.2 in [4], ) to positive definite matrices.

Theorem 4.2 (T heorem 3 in [15]). Let ρ : [0,∞[→ [1,∞[ be the inverse function of ψ(t) for

t ≥ 1. Then we have for any positive definite matrix V and any β ≥ 1 :

Ψ(βV )≤ nψ

(
βρ

(
Ψ(V )

n

))
.
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Lemma 4.3. Let 0≤ θ < 1 and V+ := V√
1−θ

. If Ψ(V )≤ τ , then for p≥ 2, we have

Ψ(V+) ≤
p2 +3p+5
2(1−θ)

[
θ
√

n+
√

τ

α +2

]2

.(22)

Ψ(V+) ≤
τ +n(p+2)θ +2θ

√
n(p+2)τ

1−θ
.(23)

Proof. To prove (22) of the lemma, since 1√
1−θ
≥ 1 and ρ

(
Ψ(V )

n

)
≥ 1, we have

ρ

(
Ψ(V )

n

)
√

1−θ
≥ 1.

Using Theorem 1 with β = 1√
1−θ

, the inequality (18) in Lemma 3 and Ψ(V )≤ τ, we have

Ψ(V+) ≤ nψ

ρ

(
Ψ(V )

n

)
√

1−θ

≤ n
(

p2 +3p+5
)

2

ρ

(
Ψ(V )

n

)
√

1−θ
−1

2

≤
n
(

p2 +3p+5
)

2(1−θ)

[√
Ψ(V )

n(p+2)
+1−

√
1−θ

]2

=
n
(

p2 +3p+5
)

2(1−θ)

[√
Ψ(V )

n(p+2)
+

θ

1+
√

1−θ

]2

≤ p2 +3p+5
2(1−θ)

[√
τ

p+2
+
√

nθ

]2

.

Where the last inequality holds from 1−
√

1−θ = θ

1+
√

1−θ
≤ θ , 0 ≤ θ < 1. For (23), using

Theorem 1 with β = 1√
1−θ

, Ψ(V )≤ τ inequality (20) and Lemma 5 we obtain the other upper

bound of Ψ(V ) as follows:

Ψ(V+) ≤ nψ

ρ

(
Ψ(V )

n

)
√

1−θ

≤ n
(

ψ

(
ρ

(
Ψ(V )

n

))
+

θ (p+2)
1−θ

ρ
2
(

Ψ(V )

n

))

= Ψ(V )+
nθ

1−θ
(p+2)ρ

2
(

Ψ(V )

n

)
≤Ψ(V )+

nθ

1−θ
(p+2)

√ Ψ(V )
n

(p+2)
+1

2

≤ τ +
nθ

1−θ
(p+2)

[√
τ

n(p+2)
+1
]2

=
τ +n(p+2)θ +2θ

√
n(p+2)τ

1−θ
.

This completes the proof. �

Denote

(24)
Ψ̄0 =

τ+n(p+2)θ+2θ
√

n(p+2)τ
1−θ

,

Ψ̃0 =
p2+3p+5
2(1−θ)

[√
τ

p+2 +
√

nθ

]2
.
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We will use Ψ̄0 and Ψ̃0 for the upper bounds of Ψ(V ) for large-update and small-update meth-

ods respectively during the process of the algorithm.

Remark 3. For the large-update method, by taking τ =O (n) , θ = Θ(1) , we have Ψ̄0 =O (pn),

for small-update methods with

τ = O (1) , θ = Θ

(
1√
n

)
, we have Ψ̃0 = O (1) .

4.1. Step size determination. We can write from (11) and (7)

and

X+ := X +α∆X = X +α
√

µDDX D =
√

µD(V +αDX)D,

S+ := S+α∆S = S+α
√

µD−1DSD−1 =
√

µD−1(V +αDS)D−1.

Thus we have

V 2
+ = (V +αDX)(V +αDS)

Therefore, V 2
+ is similar to the matrix[

(V +αDX)
1
2 (V +αDS)(V +αDX)

1
2

]
.

Consequently, the eigenvalues of the matrix V+ are the same as those of[
(V +αDX)

1
2 (V +αDS)(V +αDX)

1
2

] 1
2
.

Since the proximity after one step is defined by Ψ(V+), and then we have

Ψ(V+) = Ψ

([
(V +αDX)

1
2 (V +αDS)(V +αDX)

1
2

] 1
2
)
.

By Theorem 4, we obtain

Ψ(V+)≤
1
2
[Ψ(V +αDX)+Ψ(V +αDS)] .

Define for α > 0,

f (α) := Ψ(V+)−Ψ(V ).

According to Lemma 2 and the definition of f (α), we obtain that f (α)≤ f1 (α) where

f1 (α) :=
1
2
(Ψ(V +αDX)+Ψ(V +αDS))−Ψ(V ).
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Obviously

f (0) = f1(0) = 0.

We obtain by taking the derivative with respect to α

f ′1(α) =
1
2

tr
(
ψ
′(V +αDX)DX +ψ

′(V +αDS)DS
)
,

and

f ′′1 (α) =
1
2

d2

dα2 tr(ψ(V +αDX)+ψ(V +αDS))

=
1
2

tr
(
ψ
′′(V +αDX)D2

X +ψ
′′(V +αDS)D2

S
)
.

It is evident that f1(α)> 0 unless DX = DS = 0.

Hence, using (21) and the third equation of (10), we obtain

f ′1(0) =
1
2

tr[ψ(V )′DX +ψ(V )′DS] =
1
2

tr
(
ψ
′(V )(DX +DS)

)
=

1
2

tr
[
ψ(V )′

(
−ψ

′(V )
)]

=
1
2

tr
(
−ψ

′(V )2)=−2δ
2 (V ) .(25)

The notations used in the sequel are as follows: δ := δ (V ) and Ψ := Ψ(V ).

Lemma 4.4 (Lemma 8 in [15]). Let δ be defined as in (21). Then we have

f ′′1 (α)≤ 2δ
2
ψ
′′(λn(V )−2αδ ),

where λn(V ) is the smallest eigenvalue of V.

Using Lemma 8 and (25), we have the following lemma.

Lemma 4.5 (Lemma 4.2 in [4]). If the step size α satisfies

(26) ψ
′(λn(V ))−ψ

′(λn(V )−2αδ )≤ 2δ ,

then

f ′(α)≤ 0.
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Lemma 4.6 (Lemma 4.3 in [4]). Let ρ : [0,∞)→ (0,1] denote the inverse function of the re-

striction of -1
2ψ ′(t) on the interval (0,1], then the largest possible value of the step size of α

satisfying (26) is given by

ᾱ :=
1

2δ
(ρ(δ )−ρ (2δ ) .

Lemma 4.7 (Lemma 4.4 in [4]). Let ρ and ᾱ be the same as defined in Lemma 10. Then

ᾱ ≥ 1
ψ ′′ (ρ (2δ ))

.

In the sequel, we use the notation

(27) ᾱ =
1

ψ ′′ (ρ (2δ ))

Lemma 4.8. Let ρ and ᾱ be as defined in Lemma 11. If Ψ(v)≥ τ ≥ 1, then we have

ᾱ ≥ δ
− p+2

p+1

25p2 +27p+29
.

Proof. Applying Lemma 11, the definition of ψ ′′ (t) , and (20) we have ᾱ ≥ 1
ψ ′′(ρ(2δ )) , and for

ρ (2δ ) = t ∈ (0,1] we have

1
ψ ′′ (ρ (2δ ))

=
1

2(p+2)+ p(p+1)
(ρ(2δ ))p+2 +

1
ρ(2δ )2

,

for z = 2δ , this implies that

ψ
′′ (ρ (2δ ))≤ 2(p+2)+ p(p+1)

(
4δ + p

p

) p+2
p+1

+

(
4δ + p

p

) 2
p+1

,

we have

ᾱ ≥ 1
ψ ′′ (ρ (2δ ))

≥ 1

2(p+2)+ p(p+1)
(

4δ+p
p

) p+2
p+1

+
(

4δ+p
p

) 2
p+1

Since (4δ +1)
2

p+1 ≤ (4δ +1)
p+2
p+1 for p ∈ [2,∞[, it follows that

ᾱ ≥ 1

2(p+2)+(p2 + p+1)
(

4δ+p
p

) p+2
p+1
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Using Remark 3

ᾱ ≥ 1

2
√

p+2δ +(p2 + p+1)
(

4δ+p
p

) p+2
p+1

≥ 1[
2(p+2)+(p2 + p+1)5

p+2
p+1

]
δ

p+2
p+1

≥ δ
− p+2

p+1

25p2 +27p+29
.

This completes the proof. �

For using α̃ as the default step size in the algorithm, define the α̃ as follows

(28) α̃ =
δ
− p+2

p+1

25p2 +27p+29
.

4.2. Decrease the value of Ψ(V ) during an inner iteration. Now we demonstrate that, with

our default step size α , our proximity function is diminishing.

Lemma 4.9 ( Lemma 4.5 in [4]). If the step size α is such that α ≤ ᾱ , then

f (α)≤−αδ
2.

Lemma 4.10. Since the default size α̃ satisfies α̃ ≤ ᾱ, by Lemma 13. We have the following

upper bound for f (α̃) :

(29) f (α̃)≤−(p+1)
p

2(p+1)−1

25
Ψ

p
2(p+1)

Proof. Using Lemma 13 with α = α̃ (28) , we have

f (α̃) ≤ −α̃δ
2 =− δ

2− p+2
(p+1)

25p2 +27p+29

= − δ
p

p+1

25p2 +27p+29

≤ −(p+2)
p

2(p+1) Ψ
p

2(p+1)

25
(

p2 + 27
25 p+ 29

25

) ≤−(p+2)
p

2(p+1) Ψ
p

2(p+1)

25(p+1)2

≤ −(p+1)
p

2(p+1)−1
Ψ

p
2(p+1)

25
.

This proves the theorem. �
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Proposition 4.11 (Proposition 1.3.2 in [14]). Suppose that a sequence{
tk > 0, k = 0,1,2, ...,K

}
is satisfying the following inequality:

tk+1 ≤ tk−ηt1−γ

k , k = 0,1,2, ...,K−1,

where η > 0 and γ ∈ (0,1] . Then K ≤

⌈
tγ

0
ηγ

⌉
.

The value of Ψ after-update is expressed as Ψ0, and the successive values in same outer

iteration are represented as Ψl , l = 0,1,2,3, ..., K, where K denotes the total number of inner

iterations per an outer iteration. Then we have Ψ0 ≤ Ψ̃0 and Ψ0 ≤ Ψ̄0, where Ψ̃0 and Ψ̄0 are

defined in(24). Then we have ΨK−1 > τ and 0≤ΨK ≤ τ .

(29) shows the diminution of every inner iteration. In [4] we may obtain the proper values of

η and γ ∈ (0,1].

η =
1
25

(p+1)
p

2(p+1)−1 and γ =
p+2

2(p+1)
.

Lemma 4.12. Let L1 and L2 be the total numbers of inner iterations in the outer iteration for

small- and large-update methods, respectively. Then for p≥ 2, we have

L1 ≤
⌈

50(p+1)
p+2

2(p+1) Ψ̃

p+2
2(p+1)
0

⌉
,(30)

L2 ≤
⌈

50(p+1)
p+2

2(p+1) Ψ̄

p+2
2(p+1)
0

⌉
,(31)

Proof. For (30) , using Proposition 1 and Lemma 15 with η = 1
25 (p+1)

p
2(p+1)−1 and γ = p+2

2(p+1)

we get:

L1 ≤

⌈
Ψ

γ

0
ηγ

⌉
=

50(p+1)
3p+4

2(p+1) Ψ̃

p+2
2(p+1)
0

p+2

≤
⌈

50(p+1)
p+2

2(p+1) Ψ̃

p+2
2(p+1)
0

⌉
For (31), in a similar fashion, we have

L2 ≤
⌈

50(p+1)
p+2

2(p+1) Ψ̄

p+2
2(p+1)
0

⌉
This completes the proof. �

The number of barrier parameter updates is given by (cf. 11, Lemma II.7 page 116)⌈
1
θ

log
n
ε

⌉
.
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By multiplying the number of outer iterations by the number of inner iterations, the total number

of iterations for small-and large-update methods is bounded by⌈
50(p+1)

p+2
2(p+1) Ψ̄

p+2
2(p+1)
0

1
θ

log
n
ε

⌉
, and

⌈
50(p+1)

p+2
2(p+1) Ψ̃

p+2
2(p+1)
0

1
θ

log
n
ε

⌉
For large-update methods with one takes for θ a constant (independent on n), namely θ =

Θ(1), and τ = O(n), The iteration bound then becomes

O

(
(p+1)

p+2
2(p+1) n

p+2
2(p+1)

log
n
ε

)
.

For small-update methods, we have τ =O(1) and θ =
1√
n

. A better bound is obtained by using

the upper bound Ψ̃0 in (24). Note now Ψ̃0 = O(p), and the iteration bound becomes

O

(
(p+1)

p+2
2(p+1)

√
n log

n
ε

)
iterations complexity.

Remark 4. p = 2 is also an appropriate choice. The iteration bound is then O
(

n
2
3 log

n
ε

)
and

O
(√

n log n
ε

)
iterations complexity for large and small-update methods, respectively.

4.3. Numerical tests. The following examples are taken from [16] and implemented in the

C++ language. We have taken ε = 10−6, τ = n, and θ ∈ (0,1). In the table of results, (m,n)

represents the size of the problem, and Itr is the number of iterations necessary to obtain an

optimal solution. In our proposed kernel function, we have taken p = 2 and we compare our

numerical results with the alternatives proposed in [16].

We consider the LSO problem:

(P) min{C •X , Ai •X = bi, 1≤ i≤ m, X � 0} ,

and its dual problem

(D) max

{
bT y :

m

∑
i=1

yiAi +S =C, S� 0

}
,

Example 4.13. : C (i, j) =−1 ∀i, j = 1,2, A1 =

 1 −1

−1 1

 , A2 = E, and b = (1,1)T . The

initial solution (X0,y0,S0), such that X0 = diag
(1

2 ,−
1
2

)
, y0 =(0,−3)T and S0 =

 2 −1

−1 2

 .
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Numerical results

Small update Alg

Large update Alg

Our Algorithm Algorithm [16]

Itr

4

2

Itr (alt 1)

5

-

Itr (alt 2)

5

-

Itr (alt 3)

5

-

Itr (alt 4)

5

-

Example 4.14. C = diag(5,8,5,5) , A4 = E, b = (1,1,1,2)T and

Ak(i, j) =


1 if i = j = k or i = j = k+1

−1 if i = k, j = k+1 or i = k+1, j = k, k = 1,2,3

0 otherwise

The initial solution (X0,y0,S0), such that X0 = 1
2E, y0 = (1.5,1.5,1.5,1.5)T and S0 =

2 1,5 0 0

1,5 3,5 1,5 0

0 1,5 3,5 1,5

0 0 1,5 2



Numerical results

Small update Alg

Large update Alg

Our Algorithm Algorithm [16]

Itr

9

6

Itr (alt 1)

14

-

Itr (alt 2)

7

-

Itr (alt 3)

7

-

Itr (alt 4)

7

-

Example 4.15. C = diag(−4,−2,−2,0,0,0), A1 = diag(1,−1,1,1,0,0),

A2 = diag(1,1,1,0,1,0), A3 = diag(2,2,1,0,0,1) and b = (6,2,4)T

The initial solution (X0,y0,S0), such that

X0 = diag(1.467,0.087,0.36,4.26,0.086,0.532) , y0 = (−1,−1,−2)T and S0 =

diag(2,2,2,1,1,2) ,
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Numerical results

Small update Alg

Large update Alg

Our Algorithm Algorithm [16]

Itr

11

5

Itr (alt 1)

18

-

Itr (alt 2)

8

-

Itr (alt 3)

8

-

Itr (alt 4)

6

-

Example 4.16. (m,n) : variable size, C =E, the matrices Ak,k = 1, ...,m, are defined as follows

Ak =


1 if i = j = k

1 if i = j and i = m+ k,

0 otherwise,
and b(i) = 2, i = 1, ...,m.

The initial solution (X0,y0,S0), such that X0(x0
i j) =

 1.5 if i≤ j

0.5 if i > j
,

y0(i) =−2, i = 1, ...,m,and S0 = E.

Numerical results

Small

-update Alg

Large

-update Alg

size (m,n)

(10, 20)

(20, 40)

(50, 100)

(100, 200)

(150, 300)

(10, 20)

(20, 40)

(50, 100)

(100, 200)

(150, 300)

Our Algorithm Algorithm [16]

Itr

4

4

3

3

3

Itr (alt 1)

4

4

4

5

6

Itr (alt 2)

4

4

4

5

6

Itr (alt 3)

8

8

9

9

9

Itr (alt 4)

4

4

4

5

5

3

3

2

2

2

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
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5. CONCLUSION

In this work, we propose a novel kernel function with a double barrier term and use it

in conjunction with a primal-dual path-following interior point technique to solve semidefi-

nite optimization problems. For large and small-update algorithms, the iteration bounds are

O

(
(pn)

p+1
2p log

tr
(
X0S0)
ε

)
and O

(
p

p+1
2p √n log

tr
(
X0S0)
ε

)
, respectively. We established that

the iteration bound of a large-update interior-point method is O
(

n
2
3 log

n
ε

)
, and we see that

complexity has been reduced by a factor of n
1
3 . For small-update methods, we have obtained

O
(√

n log
n
ε

)
iteration bound which matches the currently best-known iteration bound for

small-update methods. Future study might concentrate on the extension to symmetric cone

optimization. Eventually, several strategies are used for numerical tests, indicating that the

kernel function used in the algorithm is effective.
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