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A PRIMAL-DUAL IPMS FOR SDO PROBLEM BASED ON A NEW KERNEL
FUNCTION WITH A LOGARITHMIC BARRIER TERM

Abderrahim Guemmaz, El Amir Djeffal1, and Bachir Bounibane

ABSTRACT. In this paper, we consider primal-dual Interior Point Method (IPMs)

for semidefinite optimization problem (SDO) problems, based on a new kernel
function with a logarithmic barrier term, which play an important role for gen-
erating a new design of primaldual (IPM) algorithms. New search directions and
proximity functions are proposed, based on this kernel function.We proved that
our algorithm has O

(
qsn

sq+1
2sq log

(
n
ε

))
iteration bound for large-update methods

and O
(
q2s2
√
n log

(
n
ε

))
iteration bound for small-update methods. Finally, for

its numerical tests, some strategies are used and indicate that the algorithm is
efficient.

1. INTRODUCTION

The first paper dealing with SDO problems dates back to the early 1960s (Bell-
man and Fan, 1963). For the next many years, the whole topic of SDO stayed
silent except for a few isolated results scattered in the literature. The situation
changed dramatically around the beginning of the 1990s when SDO started to
emerge as one of the fastest developing areas of mathematical programming.
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Since then it has become one of the most active research areas in mathematical
programming (See [10]). The efficient new algorithms, interior-point methods
(IPMs) have led to increased interest both in the application and the research
of SDO. In this paper we deal with so-called primal-dual IPMs. It is gener-
ally agreed that these IPMs are most efficient from a computational point of
view [11]. In 1984, Karmarkar [13] proposed a polynomial-time algorithm the
so-called IPMs for solving linear optimization (LO) problems. This method is
extended to SDO, which an important contribution in this field was made by
Nesterov and Todd [5, 14]. For a comprehensive study, the reader is referred
to [3,7,12].

Many researchers have designed different types of primal-dual interior-point
methods (IPMs). Among them, IPMs based on kernel functions have been de-
signed. Several kernel functions have been introduced including the so-called self-
regular kernel functions [2,8] and the nonself-regular kernel functions [2,15]. In
principle, a kernel function gives rise to a search direction and hence to a primal-
dual interior point method. In this paper, we consider the new kernel function
with a logarithmic Barrier Term as follows

(1.1) ψs(t) =
(t2 − 1)

2
− log(t)

2
− 1

2s

s∑
j=1

t1−jq − 1

1− jq
, q > 1, s ∈ N\{0}.

We will formulate an interior-point methods for SDO by using a new proxim-
ity function and give its complexity analysis, and then we show that the iteration
bounds are O

(
qsn

sq+1
2Sq log

(
n
ε

))
and O

(
q2s2
√
n log

(
n
ε

))
for large and small-update

methods, respectively. The remainder of this paper is organized as follows. First
in Sect.(1), define the central path and the classical NT search direction and the
new search direction determined by Kernel Functions for SDO, then we present
the generic primal-dual IPM algorithm. The new kernel function and its prop-
erties and study the matrix function ΦS (V ) are presented in Sect.(3). In Sect.(4),
we analyse the algorithm and derive the complexity bound for SDO. Some nu-
merical results are provided in Sect.(5). Finally, some concluding remarks follow
in Sect.(6).
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2. STATEMENT OF THE PROBLEM

We consider the semidefinite optimization problem (SDO) in its primal format:

(P) min {C •X : Ai •X = bi, 1 ≤ i ≤ m, X � 0} ,

along with its dual problem as

(D) max

{
bTy :

m∑
i=1

yiAi + S = C, S � 0

}
,

where C, Ai ∈ Sn, 1 ≤ i ≤ m, b = (b1, b2, . . . , bm) ∈ Rm, y ∈ Sm. Here Sn denotes
the space of n× n real symmetric matrices. In addition X � 0 indicates that X is
a symmetric postive semidefinite and the operator • denotes the standard inner

product in Sn, i.e., C •X = Tr (CX) =
n∑
i=1

n∑
i=1

CijXij, where Tr denotes the trace.

Throughout the paper, we assume that the Ai are linearly independent.
Now, we recall the notion of the central path with its properties and we derive

the classical Nestrov-Todd search direction for SDO.
Throughout the paper, we assume that (P ) and (D) satisfy the interior point

condition (IPC), i.e., there exists a strictly feasible pair (X0, y0, S0) such that

Ai •X0 = bi, i = 1, 2, . . . ,m,
m∑
i=1

y0
iAi + S0 = C, X0 �, S0 � 0.

If the (IPC) holds, then the Karush-Kuhn-Tucker (KKT ) optimality conditions for
both problems (P ) and (D) can be expressed as follows

(2.1)


Ai •X = bi, 1 ≤ i ≤ m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = 0.

The basic idea of primal-dual IPMs is to replace the last equation in system (2.1),
which is so called complementarity condition by the parameterized equationXS =
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µI with X � 0, S � 0, and µ > 0. This leads us to the following system:

(2.2)


Ai •X = bi, 1 ≤ i ≤ m, X � 0,
m∑
i=1

yiAi + S = C; S � 0,

XS = µI.

The IPC implies that system (2.2) has a unique solution (X(µ), y(µ), S(µ)), for
each µ > 0. We call X(µ) the µ-center of (P ) and (y(µ), S(µ)) is known as the µ-
center of (D). As µ goes to zero [15,16], (X(µ), y(µ), S(µ)) converges to the opti-
mal solution of the problem (P ) and (D). We call the set {(X(µ), y(µ), S(µ))|µ > 0}
the central path of the problems (P ) and (D). Now to obtain the search direction
for SDO, we apply Newton’s method to the system (2.2) for a given strictly feasible
primal-dual point (X, y, S), which yields the following linear system of equations:

(2.3)


Ai •∆X = bi, 1 ≤ i ≤ m, X � 0,
m∑
i=1

∆yiAi + ∆S = 0, S � 0,

X∆S + ∆XS = µI −XS.

The system (2.3) can be rewritten as

(2.4)


Ai •∆X = bi, 1 ≤ i ≤ m; X � 0,
m∑
i=1

∆yiAi + ∆S = 0, S � 0,

X∆SS−1 + ∆X = µS−1 −X.

System (2.4) has a unique solution [16], in which ∆X is not necessarily symmet-
ric. because ∆X SS−1 may be not symmetric. Many researchers have proposed
methods for symmetrizing the third equation in the Newton system (2.3) such that
the resulting new system has a unique symmetric solution.

2.1. A new search directions. In order to provide the scaled Newton system has
a unique symmetric solution, Zhang [17] introduced the following symmetrization
operator

HP (M) =
1

2

(
PMP−1 +

(
PMP−1

)T)
, ∀M ∈ Rn×n.

One can easily verify that
HP (M) = µI,
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for, any symetric matrix M, and where the scaling matrix P determines the sym-
metrisation strategy. For any given nonsingular matrix P , the system (2.2) is equiv-
alent to

(2.5)


Ai •X = bi, 1 ≤ i ≤ m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

HP (XS) = µI.

Applying Newton’s method to the system (2.5), we obtain the Newton system as
follows

(2.6)


Ai •∆X = 0, 1 ≤ i ≤ m,
m∑
i=1

∆yiAi + ∆S = 0,

HP (X∆S + ∆XS) = µI−HP (XS) .

The search direction obtained through the system (2.6) is called the Monteiro-Zang
(MZ) unified direction. Different choices of the matrix P result in different search
directions (see. eg., [3, 6, 12]). In this paper, we use the NT symmetrization
scheme [6], from which the NT search direction is derived. Let us define the
matrix.

P := X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 = S−

1
2

(
S

1
2XS

1
2 )
) 1

2
S−

1
2 ,

and also define D = P
1
2 , where P

1
2 denotes the symmetric square root of P. The

matrix D can be used to rescale X and S to the same matrix V, defined by

(2.7) V =
1
√
µ
D−1XD−1 =

1
√
µ
DSD =

1
√
µ

(D−1XSD)
1
2 .

Note that both matrices D and V are symmetric and positive definite. We have

V 2 =
1
√
µ
D−1XSD.

On the other hand, we define:

(2.8)

Āi = 1√
µ
DAiD, i = 1, . . . ,m,

DX = 1√
µ
D−1∆XD−1,

DS = 1√
µ
D∆SD.
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From (2.7), after some elementary reductions, the NT search direction (DX ,∆y,DS)

satisfies the following system

(2.9)


Āi •DX = 0, 1 ≤ i ≤ m,
m∑
i=1

∆yiĀi +DS = 0,

DX +DS = V −1 − V.

Again, this system has a unique solution as (DX ,∆y,DS), which is called the NT
search direction.

The first two equations in system (2.9) imply that DX and DS are orthogonal:

Tr(DXDS) = Tr(DSDX) = 0.

Hence, using the third equation in (2.9) we obtain

(‖DX +DS‖)2 = ‖DX‖2 + ‖DS‖2 =
∥∥V −1 − V

∥∥2
= ‖ψ′ (V )‖2

.

This implies that DX , DS are both zero if and only if V −1 − V = 0. In this case, X
and S satisfy XS = µI, which indicates that X and S are the µ−centers.

In fact, the right-hand side of the third equation in (2.9) is the negative gradient
of the matrix barrier function Φc(V ) with the classical kernel function ψc(t) =
t2 − 1

2
− log(t), while ψc(t) satisfies:

ψ′c(1) = ψc(1) = 0, ψ′′c (t) > 0, t > 0 and lim
t−→0+

ψc(t) = lim
t−→+∞

ψc(t) = +∞.

Then,

Φc (V ) = Tr (ψc (V )) =
n∑
i=1

(ψc (λi(V )))

=
n∑
i=1

(
λi(V )2−1

2
− log (λi(V ))

)
.

That is to say
∇Φc(V ) = V −1 − V.

Moreover, we call ψc(t) the kernel function of the logarithmic barrier function
Φc(V ). Thus, the system (2.9) becomes

(2.10)


Āi •DX = 0, 1 ≤ i ≤ m,
m∑
i=1

∆yiĀi +DS = 0,

DX +DS = −∇Φc(V ).
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In this paper, we replace Φc(V ) by a new barrier function Φs(V ) and ψc(t) by a
new kernel function ψs(t), where ψs is defined in (1.1) .

We replace the right-hand side of the third equation in (2.10) by−∇Φs(V ). Thus
this system can be rewritten as

(2.11)


Āi •DX = 0, 1 ≤ i ≤ m,
m∑
i=1

∆yiĀi +DS = 0,

DX +DS = −∇Φs(V ).

In the algorithm, we use the barrier function Φs(V ) as a measure function and
also we introduce the norm-based proximity measure δ (V ) to the central path as
follows:

(2.12) δ (V ) :=
1

2
‖ψ′s (V )‖ =

1

2

√√√√ m∑
i=1

[ψ′s (λi (V ))]2 =
1

2
‖DX +DS‖ ,

and we have

DX = DS = 0n×n ⇔ δ (V ) = 0n×n

⇔ V = I ⇔ Φs(V ) = 0 ⇔ X = X (µ) , S = S (µ) .

By taking a step along the search direction, with the step size α defined by some
line search rules, we construct a new triple (X, y, S) according to

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S.

Hence, the value of δ (V ) can be considered as a measure for the distance be-
tween the matrix pair (X, y, S) and the central path.

2.2. A generic primal–dual IPM for SDO. We can now describe the algorithm
briefly. according to the definition of the matrix V , it is determined by the current
iterates (X,S) and the center parameter µ. Thus Φs (X,S, µ) in the algorithm is
another expression of the matrix function, we denote Φs(V ) = Φs (X,S, µ) . Hence
we can use Φs(V ) as a proximity function to measure the distance between the
current iteration and the corresponding µ−center. The primal-dual interior-point
algorithm for SDO works as follows: Assume that τ ≥ 1 and there is a strictly
feasible point (X, y, S) which is in a τ−neighborhood of the given µ−center. We



456 A. Guemmaz, E.A. Djeffal, and B. Bounibane

update µ to µ+ := (1 − θ)µ, for some fixed θ ∈ (0, 1), and then solve the sys-
tem (2.11) so that (∆X,∆y,∆S) is computed via (2.8) to obtain the NT search
direction. The positivity condition of a new iteration is ensured with the right
choice of the step size α. This procedure is repeated until we find a new itera-
tion (X+, y+, S+) which is in a τ−neighborhood of the µ+−center and then we let
µ := µ+ and (X, y, S) := (X+, y+, S+). We repeat the process until nµ < ε.The
generic form of the algorithm is shown in Fig.1

Input:
A threshold parameter τ ≥ 1;

an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;.
a strictly feasible pair (X0, S0) and µ0 = Tr(X0S0)

n
such that Φs(X

0, S0;µ0) ≤ τ.

begin
X := X0; y := y0;S := S0;µ := µ0;

while nµ ≥ ε do
begin
µ := (1− θ)µ;

while Φs (X,S, µ) > τ do
begin
Solve system (2.11) and use (2.8) to obtain (∆X,∆y,∆S);

Determine a suitable step size α;
Update (X, y, S) := (X, y, S) + α (∆X,∆y,∆S) .

end while
end while
end

Fig.1 Generic Primal-Dual Algorithm for SDO.

3. THE PROPERTIES OF THE NEW KERNEL FUNCTION

We will now address a new kernel function with its properties are provided.
Let’s define the new univariate function

ψs(t) =
(t2 − 1)

2
− log(t)

2
− 1

2s

s∑
j=1

t1−jq − 1

1− jq
, q > 1, s ∈ N\{0}.
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It is easy to observe that as t→ 0 or t→∞, then ψ(t)→∞. So, ψs(t) is without
a doubt a kernel function.

We’ll need the first three derivatives of ψs(t),we provide them as below

ψ
′

s(t) = t− 1

2t
− 1

2s

s∑
j=1

t−jq,

ψ
′′

s (t) = 1 +
1

2t2
+

1

2s

s∑
j=1

qjt−jq−1,

ψ
′′′

s (t) = − 1

t3
− 1

2s

s∑
j=1

jq(jq + 1)t−jq−2.

If s = 1, we obtain the kernel function (12) given by Bouaafia et al. in [18]. The
following lemma establishes the efficiency of the new kernel function (1.1).

Lemma 3.1. Let ψS(t) be as defined in (1.1) and t > 0. Then,

ψ
′′

S(t) > 1,

ψ
′′′

S (t) < 0,

tψ
′′

S(t)− ψ′S(t) > 0,(3.1)

tψ
′′

S(t) + ψ
′

S(t) > 0.(3.2)

The last property (3.2) in lemma 3.1 is equivalent to convexity of composed
functions t→ ψs(e

t) and this holds if only if ψs(
√
t1t2) ≤ 1

2
(ψs(t1) + ψs(t2)), for any

t1, t2 ≥ 0. This property is well-known in the literature, and numerous researchers
have demonstrated it (see [7,21]). We have the following theorem

Theorem 3.1. [Proposition 5.2.6 in [1] ]Let V1, V2 ∈ Sn++, and Φs is the real valued
matrix function induced by the matrix function ψs. Then,

Φs

([
V

1
2

1 V2V
1
2

1

])
≤ 1

2
(Φs (V1) + Φs (V2)) .

We provide some technical findings of the new kernel function in preparation
for later.
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Lemma 3.2. For ψs(t), we’ve got

1

2
(t− 1)2 ≤ ψs(t) ≤

1

2

[
ψ
′

s(t)
]2

, t > 0.(3.3)

ψs(t) ≤
[

6 + q(s+ 1)

8

]
(t− 1)2, t > 1.(3.4)

Let σ : [0,∞[ → [1,+∞[ be the inverse function of ψs(t) for t ≥ 1 and ρ :

[0,∞[ → ]0, 1] be the inverse function of −1
2
ψ
′
s(t) for all t ∈ ]0, 1]. Then we have

the following lemma.

Lemma 3.3. For ψs(t), we have

1 +

√
8s

6 + q(s+ 1)
≤ σ(s) ≤ 1 +

√
2s, s ≥ 0.(3.5)

ρ(z) >

[
1

4z + 2

] 1
sq

, z > 0.(3.6)

Proof. For (3.5), let s = ψS(t), t ≥ 1, i.e., σ(s) = t, t ≥ 1. By (3.3), we have
ψS(t) ≥ 1

2
(t− 1)2. Then s ≥ 1

2
(t− 1)2, t ≥ 1. This means that t = σ(s) ≤ 1 +

√
2s.

By (3.4), we get

s = ψS(t) ≤
[

6 + q(S + 1)

8

]
(t− 1)2, t ≥ 1.

So, t = σ(s) ≥ 1 +
√

8s
6+q(S+1)

.

For (3.6), let z = −1
2
ψ
′
S(t), t ∈]0, 1]⇔ 2z = −ψ′S(t), t ∈]0, 1]. According to the

definition of ψ′S(t), we have

2z = −t+
1

2t
+

1

2S

S∑
j=1

t−jq > −1 +
1

2S

S∑
j=1

t−Sq = −1 +
1

2
t−Sq,

which implies t = ρ(z) >
[

1
4z+2

] 1
Sq . The proof is finished. �

Lemma 3.4. [Lemma 5 in [12]] Let σ : [0,∞[ → [1,+∞[ is the inverse function of
ψs(t), t ≥ 1. We have

Φs(βV ) ≤ nψs

(
βσ

(
Φs(V )

n

))
, v ∈ R∗, β ≥ 1.
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Lemma 3.5. Let 0 ≤ θ < 1, V+ = V√
1−θ . If Φs(V ) ≤ τ , then we have

Φs(V+) ≤ θn+ 2τ + 2
√

2τn

2(1− θ)
.

Proof. Because of 1√
1−θ ≥ 1 and σ

(
ΦS(v)
n

)
≥ 1, then

σ
(

ΦS(v)

n

)
√

1−θ ≥ 1. And for t ≥ 1,

we obtain ψS(t) ≤ t2−1
2

.
We use Lemma 3.4 with β = 1√

1−θ , (3.5), and ΦS(v) ≤ τ , we obtain

ΦS(v+) ≤ nψS

(
1√

1− θ
σ

(
ΦS(v)

n

))

≤ n

2


σ
(

ΦS(v)
n

)
√

1− θ

2

− 1

 =
n

2(1− θ)

([
σ

(
ΦS(v)

n

)]2

− (1− θ)

)

≤ n

2(1− θ)

[1 +

√
2

ΦS(v)

n
)

]2

− (1− θ)


≤ n

2(1− θ)

(
2

√
2τ

n
+ 2

τ

n
+ θ

)
=
θn+ 2τ + 2

√
2τn

2(1− θ)
.

This completes the proof. �

Denoting

(Φs)0 =
θn+ 2τ + 2

√
2τn

2(1− θ)
= L (n, θ, τ) .

So, during the algorithm’s execution, (Φs)0 is an upper bound for Φs(V+).

4. COMPLEXITY ANALYSIS

In the next subsection, we compute a default step size α and the resulting de-
crease in the barrier function.

4.1. An estimation of the step size. We devoted this section to calculating a
default step size α and the consequent decrease in the barrier function. After a
damped step, we obtain

X+ := X + α∆X, y+ := y + α∆y, S+ := S + α∆S
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From (2.8)we have

X+ := X + α∆X = X + α
√
µDDXD =

√
µD (V + αDX)D,

and
S+ = S + α∆S = S + α

√
µDDSD =

√
µD−1 (V + αDS)D−1.

On the other hand, we have

V 2
+ =

D−1X+S+D

µ
= (V + αDX) (V + αDS) ,

and it is clear that the matrix V 2
+ is similar to the matrix

(V + αDX)
1
2 (V + αDS) (V + αDX)

1
2 ,

since is convex and from Theorem (3.1) we have

Φs (V+) = Φs

(
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

)
≤ 1

2
(Φs (V + αDX) + Φs (V + αDS)) .

Defining for α > 0,

f (α) = Φs (V+)− Φs (V ) .

We thus have f (α) ≤ f1 (α), where

f1 (α) =
1

2
(Φs (V + αDX) + Φs (V + αDS))− Φs (V )

Then f (α) is the difference of the proximity between a new iterate and a current
iterate for a fixed µ > 0. It is easily seen that, f1 (α) = f (α) = 0.

Now, to estimate the decrease of the proximity during one step, we need the
two successive derivatives of f1 (α) with respect to α.

By using the rule of differentiability [4,19], we get

f
′

1(α) =
1

2
Tr (ψ′s (V + αDX)DX + ψ′s (V + αDS)DS) ,

f ′′1 (α) =
1

2
Tr
(
Ψ′′ (V + αDX)D2

X + Ψ′′ (V + αDS)D2
S

)
.

By using (2.7) and (2.12), we obtain

f ′1 (0) =
1

2
Tr (ψ′s (V ) (DX +DS)) =

1

2
Tr
(
−ψ′s (V )2) = −2δ2 (V ) .
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Noted by δ (V ) := δ, and Φs = Φs(V ).

Lemma 4.1. Let δ(v) defined in (2.12). Then

(4.1) δ(V ) ≥
√

Φs(V )

2
.

Proof. Using (3.3) and (2.12), we have

Φs(v) =
n∑
i=1

ψs(λi(V )) ≤
n∑
i=1

1

2

[
ψ
′

s(λi(V ))
]2

=
1

2

n∑
i=1

[
ψ
′

s(λi(V ))
]2

= 2δ(V )2,

and so δ(V ) ≥
√

1
2
ΦS(V ). This completes the proof. �

Lemma 4.2. [Lemma 3.4.4 in [20] ] One has

f ′′1 (α) ≤ 2δ2ψ′′s (λn (V )− 2αδ) .

Lemma 4.3. [Lemma 3.4.5 in [20] ] If the step size α satisfies

ψ′s (λn (V )− 2αδ) + ψ′s (λn (V )) ≤ 2δ,

one has f ′1 (α) ≤ 0

Lemma 4.4. [Lemma 3.4.6 in [20]] Let ρ : [0,∞) −→ (0, 1] denote the inverse
function of the restriction of −1

2
ψ′s (t) on the interval (0, 1], then the largest possible

value of the step size of α satisfying f ′1 (α) ≤ 0 is given by α =
ρ(δ)− ρ(2δ)

2δ

Lemma 4.5. [Lemma 4.4 in [1]] Let ρ and α be as defined in Lemma 4.4.Then

1

ψ′′s (ρ(2δ))
≤ α ≤ 1

ψ′′s (ρ(δ))
.

We use the notation
α̃ =

1

ψ′′s (ρ(2δ))

We are able to demonstrate the following Lemma

Lemma 4.6. Let ρ and α be as determined in Lemma 4.5. If Φs(V ) ≥ τ ≥ 1, so we
have

α ≥ 2s

2s+ s (4δ + 2)
2
sq + q

∑s
j=1 j (4δ + 2)

jq+1
sq

.
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Proof. Using Lemma 4.5, (3.1) and (3.6), we have

α ≥ 1

ψ′′s (ρ(2δ))

=
1

1 + 1
2
ρ(2δ)−2 + q

2s

∑s
j=1 j (ρ(2δ))−jq−1

≥ 1

1 + 1
2

(4δ + 2)
2
sq + q

2s

∑s
j=1 j (4δ + 2)

jq+1
sq

=
2s

2s+ s (4δ + 2)
2
sq + q

∑s
j=1 j (4δ + 2)

jq+1
sq

.

This completes the proof. �

Denoting

(4.2) α̃ =
2s

2s+ s (4δ + 2)
2
sq + q

∑s
j=1 j (4δ + 2)

jq+1
sq

,

we have that α̃ is the default step size and that α̃ ≤ α.

Lemma 4.7. [Lemma 3.12 in [7]] Let h be a convex and twice differentiable function
with h(0) = 0, h′(0) < 0, which attains its minimum at t∗ > 0. If h′′ is increasing for
t ∈ [0, t∗], then

h(t) ≤ th(0)

2
, 0 ≤ t ≤ t∗.

The following result is of great importance.

Lemma 4.8. [Lemma 4.5 in [1]] If the step size α satisfies α ≤ α, then

f(α) ≤ −αδ2.

Lemma 4.9. Let Φs(V ) ≥ 1 and let α̃ be the default step size as defined in (4.2).
Then, we have

f(α̃) ≤ − 2s

8
√

2(s+ 8) (1 + 4qs)
[Φs(V )]

sq−1
2sq .

Proof. Since Φs(v) ≥ 1, then from (4.1), we have

δ ≥
√

1

2
Φs(v) ≥

√
1

2
.

Using Lemma 4.8 (Lemma 4.5 in [1]) with α = α̃ and (4.2). This completes the
proof. �
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4.2. Iteration bound. Following the updating of µ to (1− θ)µ, we obtain

Φs(V+) ≤ (Φs)0 =
θn+ 2τ + 2

√
2τn

2(1− θ)
= L (n, θ, τ) .

After µ-update to (1− θ)µ, it is necessary tocount how many inner iterations are
required to come back to the situation, where Φs(V+) ≤ τ . We declare the value of
Φs(V ) after the updating of µ as (Φs)0 and we denote by (Φs)k , k = 1, 2, . . . , K the
values of subsequent in the same outer iteration, such that K represent the total
number of inner iterations per the outer iteration.

Lemma 4.10. [Lemma 14 in [7]] Let t0, t1, . . . , tk be a sequence of positive numbers
such that

tk+1 ≤ tk − βt1−γk , k = 0, 1, . . . , K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤
[
tγ0
βγ

]
.

Thus, it follows that

(Φs)k+1 ≤ (Φs)k − k (Φs)1−γ , k = 0, 1, . . . , K − 1,

with
κ =

2s

8
√

2(s+ 8) (1 + 4qs)
, γ = 1− sq − 1

2sq
=
sq + 1

2sq
.

Lemma 4.11. Let K be the total number of inner iterations in the outer iteration.
Then we have

K ≤ 8
√

2q(s+ 8) (1 + 4qs)

1 + sq
[(Φs)0]

sq+1
2sq .

Proof. By Lemma 1.3.2 in [7], we have K ≤ [(Φs)0]
γ

κγ
= 8

√
2q(s+8)(1+4qs)

sq+1
[(Φs)0]

sq+1
2sq .
�

Now, we estimate the total number of iterations of our algorithm.

We recall that the number of outer iterations is limited from above by
log
(
n
ε

)
θ

(see Lemma II.17, page 116 in [9]). We can establish an upper bound on the total
number of iterations by multiplying the number of outer iterations by the number
of inner iterations, such as

(4.3)
8
√

2q(s+ 8) (1 + 4qs)

sq + 1
[(Φs)0]

sq+1
2sq

log
(
n
ε

)
θ

.
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In the methods of large-update with τ = O(n) and θ = Θ(1), we have

O
(
qsn

sq+1
2sq log

(n
ε

))
iterations complexity.

This is the best well-known complexity results for large-update methods.
n the methods of small-update, the replacement of τ = O(1) and θ = Θ

(
1√
n

)
in (4.3) does not provide the best possible bound. The best bound is obtained as
follows.

By (3.4), with ψs(t) ≤
[

6+q(s+1)
8

]
(t− 1)2, t > 1. We have

Φs(V+) ≤ nψs

(
1√

1− θ
σ

(
Φs(V )

n

))
≤ n

[
6 + q(s+ 1)

8

](
1√

1− θ
σ

(
Φs(V )

n

)
− 1

)2

=
n (6 + q(s+ 1))

8(1− θ)

(
σ

(
Φs(V )

n

)
−
√

1− θ
)2

.

Using (3.5), we have

n (6 + q(s+ 1))

8(1− θ)

(
σ

(
Φs(V )

n

)
−
√

1− θ
)2

≤ n (6 + q(s+ 1))

8(1− θ)

((
1 +

√
2

Φs(V )

n

)
−
√

1− θ

)2

=
n (6 + q(s+ 1))

8(1− θ)

((
1−
√

1− θ
)

+

√
2

Φs(V )

n

)2

≤ n (6 + q(s+ 1))

8(1− θ)

(
θ +

√
2
τ

n

)2

=
(6 + q(s+ 1))

8(1− θ)

(
θ
√
n+
√

2τ
)2

= (Φs)0 ,

where we utilized that as well 1 −
√

1− θ = θ
1+θ
≤ θ and Φs(v) ≤ τ , utilizing this

upper bound for (Φs)0, we obtain the following iteration bound

8
√

2q(s+ 8) (1 + 4qs)

sq + 1
[(Φs)0]

sq+1
2sq

log
(
n
ε

)
θ

.
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Note now (Φs)0 = O(qs), and the iteration bound it be given as follows

O
(
q2s2
√
n log

(n
ε

))
iterations complexity.

5. NUMERICAL TESTS

The algorithm has been tested on some benchmark problems issued from the li-
brary of test problems SDPLIB [22]. Here we used Nbr which means the iterations
number produced by the algorithm. The implementation is manipulated in C++.
Our tolerance is ε = 10−8. For the update parameter, we have vary 0 < θ < 1.

Examples Size (m,n) Nbr. of iterations Results of our Algorithm
from [22]

control1 (21, 15) 106
θ 0.15 0.35 0.75 0.95

Nbr 104 97 46 34

hinf1 (13, 14) 27
θ 0.15 0.35 0.75 0.95

Nbr 31 27 20 18

hinf2 (13, 16) 43
θ 0.15 0.35 0.75 0.95

Nbr 39 32 27 23

hinf3 (13, 16) 109
θ 0.15 0.35 0.75 0.95

Nbr 103 99 78 69

hinf4 (13, 16) 39
θ 0.15 0.35 0.75 0.95

Nbr 31 29 17 11

hinf5 (13, 16) 42
θ 0.15 0.35 0.75 0.95

Nbr 37 30 19 15

hinf7 (13, 16) 38
θ 0.15 0.35 0.75 0.95

Nbr 31 27 23 17

hinf9 (13, 16) 28
θ 0.15 0.35 0.75 0.95

Nbr 27 19 13 11

hinf10 (21, 18) 57
θ 0.15 0.35 0.75 0.95

Nbr 49 36 29 17

truss1 (6, 13) 17
θ 0.15 0.35 0.75 0.95

Nbr 11 6 5 3

truss4 (12, 19) 21
θ 0.15 0.35 0.75 0.95

Nbr 17 11 9 6
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6. CONCLUSION

In this paper, we have improved the algorithmic complexity of (IPM) methods
for (SDO) problems by a new kernel function. More specifically, we have proved
large-update and small-update of primal-dual algorithm based on a new kernel
function with a logarithmic barrier term defined by (1.1). Future research might
focus on the extension to symmetric cone optimization. Finally, for the numerical
tests, some strategies are used and indicate that our kernel function used in the
algorithm is efficient
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