Veuillez utiliser cette adresse pour citer ce document : http://dspace.cu-barika.dz/jspui/handle/123456789/794
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorGrid, Maroua-
dc.contributor.authorBelaiche, Leyla-
dc.date.accessioned2024-01-01T13:20:16Z-
dc.date.available2024-01-01T13:20:16Z-
dc.date.issued2022-04-28-
dc.identifier.otherDOI: 10.34028 /iajit-
dc.identifier.urihttp://dspace.cu-barika.dz/jspui/handle/123456789/794-
dc.description.abstractMulti-objective optimization evolutionary algorithms (MOEAs) are considered as the most suitable heuristic methods for solving multi-objective optimization problems (MOPs). These MOEAs aim to search for a uniformly distributed, near-optimal and near-complete Pareto front for a given MOP. However, MOEAs fail to achieve their aim completely because of their fixed population size. To overcome this limit, an evolutionary approach of multi-objective optimization was proposed; the dynamic multi-objective evolutionary algorithms (DMOEAs). This paper deals with improving the user requirements (i.e., getting a set of optimal solutions in minimum computational time). Although, DMOEA has the distinction of dynamic population size, being an evolutionary algorithm means that it will certainly be characterized by long execution time. One of the main reasons for adapting parallel evolutionary algorithms (PEAs) is to obtain efficient results with an execution time much lower than the one of their sequential counterparts in order to tackle more complex problems. Thus, we propose a parallel version of DMOEA (i.e., PDMOEA). As experimental results, the proposed PDMOEA enhances DMOEA in terms of three criteria: improving the objective space, minimization of computational time and converging to the desired population size.en_US
dc.language.isoenen_US
dc.publisherThe International Arab Journal of Information Technologyen_US
dc.subjectMulti-objective problemsen_US
dc.subjectPareto fronten_US
dc.subjectMulti- objective evolutionary algorithmsen_US
dc.subjectDynamic MOEAen_US
dc.subjectParallel DMOEAen_US
dc.titleParallel Dynamic Multi-Objective Optimization Evolutionary Algorithmen_US
dc.typeArticleen_US
Collection(s) :Department of Informatics - قسم اﻹعلام اﻵلي

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Meroua Gurid-2.pdfParallel Dynamic Multi-Objective Optimization Evolutionary Algorithm257,22 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.