Veuillez utiliser cette adresse pour citer ce document : http://dspace.cu-barika.dz/jspui/handle/123456789/513
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorABDERRAHIM, GUEMMAZ-
dc.date.accessioned2023-05-29T09:06:46Z-
dc.date.available2023-05-29T09:06:46Z-
dc.date.issued2022-
dc.identifier.urihttp://dspace.cu-barika.dz/jspui/handle/123456789/513-
dc.description.abstractKernel functions serve the central goal of creating new search directions for the primal-dual interiorpoint algorithm to solve linear optimization problems. A significantly improved primal-dual interior-point algorithm for linear optimization is presented based on a novel kernel function. We show a primal-dual interior-point technique for linear optimization based on a class of kernel functions that are eligible. This research presents a new efficient kernel function-based primal-dual IPM algorithm for semidefinite programming problems based on the Nesterov-Todd (NT) direction. With a new and simple technique, we propose a new kernel function to obtain an optimal solution of the perturbed problem (SDP)m.en_US
dc.publisherJ. Math. Comput. Sci.en_US
dc.subjectlinear semidefinite programming; central trajectory methods;en_US
dc.subjectprimal-dual interior point methodsen_US
dc.titleTHEORETICAL AND NUMERICAL RESULT FOR LINEAR SEMIDEFINITE PROGRAMMING BASED ON A NEW KERNEL FUNCTIONen_US
dc.typeArticleen_US
Collection(s) :Department of Maths - قسم الرياضيات

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
7718-16689-1-PB.pdf185,44 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.