Veuillez utiliser cette adresse pour citer ce document : http://dspace.cu-barika.dz/jspui/handle/123456789/794
Titre: Parallel Dynamic Multi-Objective Optimization Evolutionary Algorithm
Auteur(s): Grid, Maroua
Belaiche, Leyla
Mots-clés: Multi-objective problems
Pareto front
Multi- objective evolutionary algorithms
Dynamic MOEA
Parallel DMOEA
Date de publication: 28-avr-2022
Editeur: The International Arab Journal of Information Technology
Résumé: Multi-objective optimization evolutionary algorithms (MOEAs) are considered as the most suitable heuristic methods for solving multi-objective optimization problems (MOPs). These MOEAs aim to search for a uniformly distributed, near-optimal and near-complete Pareto front for a given MOP. However, MOEAs fail to achieve their aim completely because of their fixed population size. To overcome this limit, an evolutionary approach of multi-objective optimization was proposed; the dynamic multi-objective evolutionary algorithms (DMOEAs). This paper deals with improving the user requirements (i.e., getting a set of optimal solutions in minimum computational time). Although, DMOEA has the distinction of dynamic population size, being an evolutionary algorithm means that it will certainly be characterized by long execution time. One of the main reasons for adapting parallel evolutionary algorithms (PEAs) is to obtain efficient results with an execution time much lower than the one of their sequential counterparts in order to tackle more complex problems. Thus, we propose a parallel version of DMOEA (i.e., PDMOEA). As experimental results, the proposed PDMOEA enhances DMOEA in terms of three criteria: improving the objective space, minimization of computational time and converging to the desired population size.
URI/URL: http://dspace.cu-barika.dz/jspui/handle/123456789/794
Collection(s) :Department of Informatics - قسم اﻹعلام اﻵلي

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Meroua Gurid-2.pdfParallel Dynamic Multi-Objective Optimization Evolutionary Algorithm257,22 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.